Implementation of Sprite Animation for Multimedia Application

Animation is simply defined as the sequencing of a series of static images to generate the illusion of movement. Most people believe that actual drawings or creation of the individual images is the animation, when in actuality it is the arrangement of those static images that conveys the motion. To become an animator, it is often assumed that needed the ability to quickly design masterpiece after masterpiece. Although some semblance of artistic skill is a necessity for the job, the real key to becoming a great animator is in the comprehension of timing. This paper will use a combination of sprite animation, frame animation, and some other techniques to cause a group of multi-colored static images to slither around in the bounded area. In addition to slithering, the images will also change the color of different parts of their body, much like the real world creatures that have this amazing ability to change the colors on their bodies do. This paper was implemented by using Java 2 Standard Edition (J2SE). It is both time-consuming and expensive to create animations, regardless if they are created by hand or by using motion-capture equipment. If the animators could reuse old animations and even blend different animations together, a lot of work would be saved in the process. The main objective of this paper is to examine a method for blending several animations together in real time. This paper presents and analyses a solution using Weighted Skeleton Animation (WSA) resulting in limited CPU time and memory waste as well as saving time for the animators. The idea presented is described in detail and implemented. In this paper, text animation, vertex animation, sprite part animation and whole sprite animation were tested. In this research paper, the resolution, smoothness and movement of animated images will be carried out from the parameters, which will be obtained from the experimental research of implementing this paper.

A Study of Filmmakers Interaction through Social Exchange Theory

Film, as an art form playing a vital role and is a powerful tool in documenting, influencing and shaping the society. Films are the collective creation of a large number of separate individuals, each contributing with creative input, unique talents, and technical expertise to the project. Recently, the Malaysian Independent (or “Indie") filmmakers have made their presence felt by winning awards at various international film festivals. Working in the digital video (DV) format, a number of independent filmmakers really hit their stride with a range of remarkably strong titles and international recognition has been quick in coming and their works are now regularly in exhibition or in competition, winning many top prizes at prestigious festivals around the world. The interaction factors among crewmembers are emphasized as imperative for group success. An in-depth interview is conducted to analyze the social interactions and exchanges between filmmakers through Social Exchanges Theory (SET). Certainly the new millennium that was marked as the digital technology revolution has changed the face of filmmaking in Malaysia. There is a clear need to study the Malaysian independent cinema especially from the perspective of understanding what causes the independent filmmakers to work so well given all of the difficulties and constraints.

Distributed Architecture of an Autonomous Four Rotor Mini-Rotorcraft based on Multi-Agent System

In this paper, we present the recently implemented approach allowing dynamics systems to plan its actions, taking into account the environment perception changes, and to control their execution when uncertainty and incomplete knowledge are the major characteristics of the situated environment [1],[2],[3],[4]. The control distributed architecture has three modules and the approach is related to hierarchical planning: the plan produced by the planner is further refined at the control layer that in turn supervises its execution by a functional level. We propose a new intelligent distributed architecture constituted by: Multi-Agent subsystem of the sensor, of the interpretation and representation of environment [9], of the dynamic localization and of the action. We tested this distributed architecture with dynamic system in the known environment. The autonomous for Rotor Mini Rotorcraft task is described by the primitive actions. The distributed controlbased on multi-agent system is in charge of achieving each task in the best possible way taking into account the context and sensory feedback.

Degradation Model of Optical Characteristics of Zno-Pigmented White Paint by Electron Radiation

Based on an analysis of the mechanism of degradation of optical characteristics of the ZnO-pigmented white paint by electron irradiation, a model of single molecular color centers is built. An equation that explains the relationship between the changes of variation of the ZnO-pigmented white paint-s spectrum absorptance and electron fluence is derived. The uncertain parameters in the equation can be calculated using the curve fitting by experimental data. The result indicates that the model can be applied to predict the degradation of optical characteristics of ZnO-pigmented white paint by electron radiation.

An Implementation of EURORADIO Protocol for ERTMS Systems

European Rail Traffic Management System (ERTMS) is the European reference for interoperable and safer signaling systems to efficiently manage trains running. If implemented, it allows trains cross seamlessly intra-European national borders. ERTMS has defined a secure communication protocol, EURORADIO, based on open communication networks. Its RadioInfill function can improve the reaction of the signaling system to changes in line conditions, avoiding unnecessary braking: its advantages in terms of power saving and travel time has been analyzed. In this paper a software implementation of the EURORADIO protocol with RadioInfill for ERTMS Level 1 using GSM-R is illustrated as part of the SR-Secure Italian project. In this building-blocks architecture the EURORADIO layers communicates together through modular Application Programm Interfaces. Security coding rules and railway industry requirements specified by EN 50128 standard have been respected. The proposed implementation has successfully passed conformity tests and has been tested on a computer-based simulator.

Climate Change Finger Prints in Mountainous Upper Euphrates Basin

Climate change leading to global warming affects the earth through many different ways such as weather (temperature, precipitation, humidity and the other parameters of weather), snow coverage and ice melting, sea level rise, hydrological cycles, quality of water, agriculture, forests, ecosystems and health. One of the most affected areas by climate change is hydrology and water resources. Regions where majority of runoff consists of snow melt are more sensitive to climate change. The first step of climate change studies is to establish trends of significant climate variables including precipitation, temperature and flow data to detect any potential climate change impacts already happened. Two popular non-parametric trend analysis methods, Mann-Kendal and Spearman-s Rho were applied to Upper Euphrates Basin (Turkey) to detect trends of precipitation, temperatures (maximum, minimum and average) and streamflow.

Board Members' Financial Education and Firms' Performance: Empirical Evidence for Bucharest Stock Exchange Companies

After the accounting scandals and the financial crisis, regulators have stressed the need for more financial experts on boards. Several studies conducted in countries with developed capital markets report positive effects of board financial competencies. As each country offers a different context and specific institutional factors this paper addresses the subject in the context of Romania. The Romanian capital market offers an interesting research field because of the heterogeneity of listed firms. After analyzing board members education based on public information posted on listed companies websites and their annual reports we found a positive association between the proportion of board members holding a postgraduate degree in financial fields and market based performance measured by Tobin q. We found also that the proportion of Board members holding degrees in financial fields is higher in bigger firms and firms with more concentrated ownership.

Investigation and Comparison of Energy Intensity in Iranian Transportation Industry (Case Study Road Transportation Sector)

Energy intensity(energy consumption intensity) is a global index which computes the required energy for producing a specific value of goods and services in each country. It is computed in terms of initial energy supply or final energy consumption. In this study (research) Divisia method is used to decompose energy consumption and energy intensity. This method decomposes consumption and energy intensity to production effects, structural and net intensity and could be done as time series or two-periodical. This study analytically investigates consumption changes and energy intensity on economical sectors of Iran and more specific on road transportation(rail road and road).Our results show that the contribution of structural effect (change in economical activities combination) is very low and the effect of net energy consumption has the higher contribution in consumption changes and energy intensity. In other words, the high consumption of energy is due to Intensity of energy consumption and is not to structural effect of transportation sector.

Managing your Online Reputation: Issues of Ethics, Trust and Privacy in a Wired, “No Place to Hide“ World

This paper examines the issues, the dangers and the saving graces of life in a transparent global community where there is truly “no place to hide". In recent years, social networks and online groups have transformed issues of privacy and the ways in which we perceive and interact with others. The idea of reputation is critical to this dynamic. The discussion begins with a brief etymological history of the concept of reputation and moves to an exploration of how and why online communication changes our basic nature, our various selves and the Bakhtin idea of the polyphonic nature of truth. The discussion considers the damaging effects of bullying and gossip, both of which constitute an assault on reputation and the latter of which is not limited to the lifetime of the person. It concludes with guidelines and specific recommendations.

Analysis of Temperature Change under Global Warming Impact using Empirical Mode Decomposition

The empirical mode decomposition (EMD) represents any time series into a finite set of basis functions. The bases are termed as intrinsic mode functions (IMFs) which are mutually orthogonal containing minimum amount of cross-information. The EMD successively extracts the IMFs with the highest local frequencies in a recursive way, which yields effectively a set low-pass filters based entirely on the properties exhibited by the data. In this paper, EMD is applied to explore the properties of the multi-year air temperature and to observe its effects on climate change under global warming. This method decomposes the original time-series into intrinsic time scale. It is capable of analyzing nonlinear, non-stationary climatic time series that cause problems to many linear statistical methods and their users. The analysis results show that the mode of EMD presents seasonal variability. The most of the IMFs have normal distribution and the energy density distribution of the IMFs satisfies Chi-square distribution. The IMFs are more effective in isolating physical processes of various time-scales and also statistically significant. The analysis results also show that the EMD method provides a good job to find many characteristics on inter annual climate. The results suggest that climate fluctuations of every single element such as temperature are the results of variations in the global atmospheric circulation.

Cytotoxic Effects of Engineered Nanoparticles in Human Mesenchymal Stem Cells

Engineered nanoparticles’ usage rapidly increased in various applications in the last decade due to their unusual properties. However, there is an ever increasing concern to understand their toxicological effect in human health. Particularly, metal and metal oxide nanoparticles have been used in various sectors including biomedical, food and agriculture. But their impact on human health is yet to be fully understood. In this present investigation, we assessed the toxic effect of engineered nanoparticles (ENPs) including Ag, MgO and Co3O4 nanoparticles (NPs) on human mesenchymal stem cells (hMSC) adopting cell viability and cellular morphological changes as tools The results suggested that silver NPs are more toxic than MgO and Co3O4NPs. The ENPs induced cytotoxicity and nuclear morphological changes in hMSC depending on dose. The cell viability decreases with increase in concentration of ENPs. The cellular morphology studies revealed that ENPs damaged the cells. These preliminary findings have implications for the use of these nanoparticles in food industry with systematic regulations.

Numerical Modeling of Gas Turbine Engines

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and quasi-stationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine first stage nozzle blade.

Strategies and Compromises: Towards an Integrated Energy and Climate Policy for Egypt

Until recently, energy security and climate change were considered separate issues to be dealt with by policymakers. The two issues are now converging, challenging the security and climate communities to develop a better understanding of how to deal with both issues simultaneously. Although Egypt is not a major contributor to the world's total GHG emissions, it is particularly vulnerable to the potential effects of global climate change such as rising sea levels and changed patterns of rainfall in the Nile Basin. Climate change is a major threat to sustainable growth and development in Egypt, and the achievement of the Millennium Development Goals. Egypt-s capacity to respond to the challenges of climate instability will be expanded by improving overall resilience, integrating climate change goals into sustainable development strategies, increasing the use of modern energy systems with reduced carbon intensity, and strengthening international initiatives. This study seeks to establish a framework for considering the complex and evolving links between energy security and climate change, applicable to Egypt.

The Effects of Asymmetric Bracing on Steel Structures under Seismic Loads

Because of architectural condition and structure application, sometimes mass source and stiffness source are not coincidence, and the structure is irregular. The structure is also might be asymmetric as an asymmetric bracing in plan which leads to unbalance distribution of stiffness or because of unbalance distribution of the mass. Both condition lead to eccentricity and torsion in the structure. The deficiency of ordinary code to evaluate the performance of steel structures against earthquake has been caused designing based on performance level or capacity spectrum be used. By using the mentioned methods it is possible to design a structure that its behavior against different earthquakes be predictive. In this article 5- story buildings with different percentage of asymmetric which is because of stiffness changes have been designed. The static and dynamic nonlinear analysis under three acceleration recording has been done. Finally performance level of the structure has been evaluated.

Optimum Working Fluid Selection for Automotive Cogeneration System

A co-generation system in automobile can improve thermal efficiency of vehicle in some degree. The waste heat from the engine exhaust and coolant is still attractive energy source that reaches around 60% of the total energy converted from fuel. To maximize the effectiveness of heat exchangers for recovering the waste heat, it is vital to select the most suitable working fluid for the system, not to mention that it is important to find the optimum design for the heat exchangers. The design of heat exchanger is out of scoop of this study; rather, the main focus has been on the right selection of working fluid for the co-generation system. Simulation study was carried out to find the most suitable working fluid that can allow the system to achieve the optimum efficiency in terms of the heat recovery rate and thermal efficiency.

Roadmapping as a Collaborative Strategic Decision-Making Process: Shaping Social Dialogue Options for the European Banking Sector

The new status generated by technological advancements and changes in the global economy raises important issues on how communities and organisations need to innovate upon their traditional processes in order to adapt to the challenges of the Knowledge Society. The DialogoS+ European project aims to study the role of and promote social dialogue in the banking sector, strengthen the link between old and new members and make social dialogue at the European level a force for innovation and change, also given the context of the international crisis emerging in 2008- 2009. Under the scope of DialogoS+, this paper describes how the community of Europe-s banking sector trade unions attempted to adapt to the challenges of the Knowledge Society by exploiting the benefits of new channels of communication, learning, knowledge generation and diffusion focusing on the concept of roadmapping. Important dimensions of social dialogue such as collective bargaining and working conditions are addressed.

Optimum Conditions for Effective Decomposition of Toluene as VOC Gas by Pilot-Scale Regenerative Thermal Oxidizer

Regenerative Thermal Oxidizer (RTO) is one of the best solutions for removal of Volatile Organic Compounds (VOC) from industrial processes. In the RTO, VOC in a raw gas are usually decomposed at 950-1300 K and the combustion heat of VOC is recovered by regenerative heat exchangers charged with ceramic honeycombs. The optimization of the treatment of VOC leads to the reduction of fuel addition to VOC decomposition, the minimization of CO2 emission and operating cost as well. In the present work, the thermal efficiency of the RTO was investigated experimentally in a pilot-scale RTO unit using toluene as a typical representative of VOC. As a result, it was recognized that the radiative heat transfer was dominant in the preheating process of a raw gas when the gas flow rate was relatively low. Further, it was found that a minimum heat exchanger volume to achieve self combustion of toluene without additional heating of the RTO by fuel combustion was dependent on both the flow rate of a raw gas and the concentration of toluene. The thermal efficiency calculated from fuel consumption and the decomposed toluene ratio, was found to have a maximum value of 0.95 at a raw gas mass flow rate of 1810 kg·h-1 and honeycombs height of 1.5m.

Impulse Response Shortening for Discrete Multitone Transceivers using Convex Optimization Approach

In this paper we propose a new criterion for solving the problem of channel shortening in multi-carrier systems. In a discrete multitone receiver, a time-domain equalizer (TEQ) reduces intersymbol interference (ISI) by shortening the effective duration of the channel impulse response. Minimum mean square error (MMSE) method for TEQ does not give satisfactory results. In [1] a new criterion for partially equalizing severe ISI channels to reduce the cyclic prefix overhead of the discrete multitone transceiver (DMT), assuming a fixed transmission bandwidth, is introduced. Due to specific constrained (unit morm constraint on the target impulse response (TIR)) in their method, the freedom to choose optimum vector (TIR) is reduced. Better results can be obtained by avoiding the unit norm constraint on the target impulse response (TIR). In this paper we change the cost function proposed in [1] to the cost function of determining the maximum of a determinant subject to linear matrix inequality (LMI) and quadratic constraint and solve the resulting optimization problem. Usefulness of the proposed method is shown with the help of simulations.

Radio and Television Supreme Council as a Regulatory Board

In parallel, broadcasting has changed rapidly with the changing of the world at the same area. Broadcasting is also influenced and reshaped in terms of the emergence of new communication technologies. These developments have resulted a lot of economic and social consequences. The most important consequences of these results are those of the powers of the governments to control over the means of communication and control mechanisms related to the descriptions of the new issues. For this purpose, autonomous and independent regulatory bodies have been established by the state. One of these regulatory bodies is the Radio and Television Supreme Council, which to be established in 1994, with the Code no 3984. Today’s Radio and Television Supreme Council which is responsible for the regulation of the radio and television broadcasts all across Turkey has an important and effective position as autonomous and independent regulatory body. The Radio and Television Supreme Council acts as being a remarkable organizer for a sensitive area of radio and television broadcasting on one hand, and the area of democratic, liberal and keep in mind the concept of the public interest by putting certain principles for the functioning of the Board control, in the context of media policy as one of the central organs, on the other hand. In this study, the role of the Radio and Television Supreme Council is examined in accordance with the Code no 3894 in order to control over the communication and control mechanisms as well as the examination of the changes in the duties of the Code No. 6112, dated 2011.

Methanol Concentration Sensitive SWCNT/Nafion Composites

An aqueous methanol sensor for use in direct methanol fuel cells (DMFCs) applications is demonstrated; the methanol sensor is built using dispersed single-walled carbon nanotubes (SWCNTs) with Nafion117 solution to detect the methanol concentration in water. The study is aimed at the potential use of the carbon nanotubes array as a methanol sensor for direct methanol fuel cells (DMFCs). The concentration of methanol in the fuel circulation loop of a DMFC system is an important operating parameter, because it determines the electrical performance and efficiency of the fuel cell system. The sensor is also operative even at ambient temperatures and responds quickly to changes in the concentration levels of the methanol. Such a sensor can be easily incorporated into the methanol fuel solution flow loop in the DMFC system.