Abstract: Single-walled carbon nanotubes (SWCNTs) are generally synthesized by chemical vapor deposition (CVD) using Fe, Co, and Ni as catalysts. However, due to the Ostwald ripening of metal catalysts, the diameter distribution of the grown SWCNTs is considerably wide (>2 nm), which is not suitable for electronics applications. In addition, reduction in the growth temperature is desirable for fabricating SWCNT devices compatible with the LSI process. Herein, we performed SWCNT growth by alcohol catalytic CVD using platinum-group metal catalysts (Pt, Rh, and Pd) because these metals have high melting points, and the reduction in the Ostwald ripening of catalyst particles is expected. Our results revealed that web-like SWCNTs were obtained from Pt and Rh catalysts at growth temperature between 500 °C and 600 °C by optimizing the ethanol pressure. The SWCNT yield from Pd catalysts was considerably low. By decreasing the growth temperature, the diameter and chirality distribution of SWCNTs from Pt and Rh catalysts became small and narrow. In particular, the diameters of most SWCNTs grown using Pt catalysts were below 1 nm and their diameter distribution was considerably narrow. On the contrary, SWCNTs can grow from Rh catalysts even at 300 °C by optimizing the growth condition, which is the lowest temperature recorded for SWCNT growth. Our results demonstrated that platinum-group metals are useful for the growth of small-diameter SWCNTs and facilitate low-temperature growth.
Abstract: Regenerative Thermal Oxidizer (RTO) is one of the
best solutions for removal of Volatile Organic Compounds (VOC)
from industrial processes. In the RTO, VOC in a raw gas are usually
decomposed at 950-1300 K and the combustion heat of VOC is
recovered by regenerative heat exchangers charged with ceramic
honeycombs. The optimization of the treatment of VOC leads to the
reduction of fuel addition to VOC decomposition, the minimization of
CO2 emission and operating cost as well.
In the present work, the thermal efficiency of the RTO was
investigated experimentally in a pilot-scale RTO unit using toluene as
a typical representative of VOC. As a result, it was recognized that the
radiative heat transfer was dominant in the preheating process of a raw
gas when the gas flow rate was relatively low. Further, it was found
that a minimum heat exchanger volume to achieve self combustion of
toluene without additional heating of the RTO by fuel combustion was
dependent on both the flow rate of a raw gas and the concentration of
toluene. The thermal efficiency calculated from fuel consumption and
the decomposed toluene ratio, was found to have a maximum value of
0.95 at a raw gas mass flow rate of 1810 kg·h-1 and honeycombs height
of 1.5m.