Numerical Analysis and Experimental Validation of a Downhole Stress/Strain Measurement Tool

Real-time measurement of applied forces, like tension, compression, torsion, and bending moment, identifies the transferred energies being applied to the bottomhole assembly (BHA). These forces are highly detrimental to measurement/logging-while-drilling tools and downhole equipment. Real-time measurement of the dynamic downhole behavior, including weight, torque, bending on bit, and vibration, establishes a real-time feedback loop between the downhole drilling system and drilling team at the surface. This paper describes the numerical analysis of the strain data acquired by the measurement tool at different locations on the strain pockets. The strain values obtained by FEA for various loading conditions (tension, compression, torque, and bending moment) are compared against experimental results obtained from an identical experimental setup. Numerical analyses results agree with experimental data within 8% and, therefore, substantiate and validate the FEA model. This FEA model can be used to analyze the combined loading conditions that reflect the actual drilling environment.

On the Robust Stability of Homogeneous Perturbed Large-Scale Bilinear Systems with Time Delays and Constrained Inputs

The stability test problem for homogeneous large-scale perturbed bilinear time-delay systems subjected to constrained inputs is considered in this paper. Both nonlinear uncertainties and interval systems are discussed. By utilizing the Lyapunove equation approach associated with linear algebraic techniques, several delay-independent criteria are presented to guarantee the robust stability of the overall systems. The main feature of the presented results is that although the Lyapunov stability theorem is used, they do not involve any Lyapunov equation which may be unsolvable. Furthermore, it is seen the proposed schemes can be applied to solve the stability analysis problem of large-scale time-delay systems.

Performance of a Transcritical CO2 Heat Pump for Simultaneous Water Cooling and Heating

This paper presents the experimental as well as the simulated performance studies on the transcritical CO2 heat pumps for simultaneous water cooling and heating; effects of water mass flow rates and water inlet temperatures of both evaporator and gas cooler on the cooling and heating capacities, system COP and water outlets temperatures are investigated. Study shows that both the water mass flow rate and inlet temperature have significant effect on system performances. Test results show that the effect of evaporator water mass flow rate on the system performances and water outlet temperatures is more pronounced (COP increases 0.6 for 1 kg/min) compared to the gas cooler water mass flow rate (COP increases 0.4 for 1 kg/min) and the effect of gas cooler water inlet temperature is more significant (COP decreases 0.48 for given ranges) compared to the evaporator water inlet temperature (COP increases 0.43 for given ranges). Comparisons of experimental values with simulated results show the maximum deviation of 5% for cooling capacity, 10% for heating capacity, 16% for system COP. This study offers useful guidelines for selecting appropriate water mass flow rate to obtain required system performance.

Computational Algorithm for Obtaining Abelian Subalgebras in Lie Algebras

The set of all abelian subalgebras is computationally obtained for any given finite-dimensional Lie algebra, starting from the nonzero brackets in its law. More concretely, an algorithm is described and implemented to compute a basis for each nontrivial abelian subalgebra with the help of the symbolic computation package MAPLE. Finally, it is also shown a brief computational study for this implementation, considering both the computing time and the used memory.

Lattice Boltzmann Simulation of Binary Mixture Diffusion Using Modern Graphics Processors

A highly optimized implementation of binary mixture diffusion with no initial bulk velocity on graphics processors is presented. The lattice Boltzmann model is employed for simulating the binary diffusion of oxygen and nitrogen into each other with different initial concentration distributions. Simulations have been performed using the latest proposed lattice Boltzmann model that satisfies both the indifferentiability principle and the H-theorem for multi-component gas mixtures. Contemporary numerical optimization techniques such as memory alignment and increasing the multiprocessor occupancy are exploited along with some novel optimization strategies to enhance the computational performance on graphics processors using the C for CUDA programming language. Speedup of more than two orders of magnitude over single-core processors is achieved on a variety of Graphical Processing Unit (GPU) devices ranging from conventional graphics cards to advanced, high-end GPUs, while the numerical results are in excellent agreement with the available analytical and numerical data in the literature.

Numerical Investigation of the Effect of Flow and Heat Transfer of a Semi-Cylindrical Obstacle Located in a Channel

In this study, a semi-cylinder obstacle placed in a channel is handled to determine the effect of flow and heat transfer around the obstacle. Both faces of the semi-cylinder are used in the numerical analysis. First, the front face of the semi-cylinder is stated perpendicular to flow, than the rear face is placed. The study is carried out numerically, by using commercial software ANSYS 11.0. The well-known κ-ε model is applied as the turbulence model. Reynolds number is in the range of 104 to 105 and air is assumed as the flowing fluid. The results showed that, heat transfer increased approximately 15 % in the front faze case, while it enhanced up to 28 % in the rear face case.

Assessment of Reliability and Quality Measures in Power Systems

The paper presents new results of a recent industry supported research and development study in which an efficient framework for evaluating practical and meaningful power system reliability and quality indices was applied. The system-wide integrated performance indices are capable of addressing and revealing areas of deficiencies and bottlenecks as well as redundancies in the composite generation-transmission-demand structure of large-scale power grids. The technique utilizes a linear programming formulation, which simulates practical operating actions and offers a general and comprehensive framework to assess the harmony and compatibility of generation, transmission and demand in a power system. Practical applications to a reduced system model as well as a portion of the Saudi power grid are also presented in the paper for demonstration purposes.

Multiple Job Shop-Scheduling using Hybrid Heuristic Algorithm

In this paper, multi-processors job shop scheduling problems are solved by a heuristic algorithm based on the hybrid of priority dispatching rules according to an ant colony optimization algorithm. The objective function is to minimize the makespan, i.e. total completion time, in which a simultanous presence of various kinds of ferons is allowed. By using the suitable hybrid of priority dispatching rules, the process of finding the best solution will be improved. Ant colony optimization algorithm, not only promote the ability of this proposed algorithm, but also decreases the total working time because of decreasing in setup times and modifying the working production line. Thus, the similar work has the same production lines. Other advantage of this algorithm is that the similar machines (not the same) can be considered. So, these machines are able to process a job with different processing and setup times. According to this capability and from this algorithm evaluation point of view, a number of test problems are solved and the associated results are analyzed. The results show a significant decrease in throughput time. It also shows that, this algorithm is able to recognize the bottleneck machine and to schedule jobs in an efficient way.

Combined Feature Based Hyperspectral Image Classification Technique Using Support Vector Machines

A spatial classification technique incorporating a State of Art Feature Extraction algorithm is proposed in this paper for classifying a heterogeneous classes present in hyper spectral images. The classification accuracy can be improved if and only if both the feature extraction and classifier selection are proper. As the classes in the hyper spectral images are assumed to have different textures, textural classification is entertained. Run Length feature extraction is entailed along with the Principal Components and Independent Components. A Hyperspectral Image of Indiana Site taken by AVIRIS is inducted for the experiment. Among the original 220 bands, a subset of 120 bands is selected. Gray Level Run Length Matrix (GLRLM) is calculated for the selected forty bands. From GLRLMs the Run Length features for individual pixels are calculated. The Principle Components are calculated for other forty bands. Independent Components are calculated for next forty bands. As Principal & Independent Components have the ability to represent the textural content of pixels, they are treated as features. The summation of Run Length features, Principal Components, and Independent Components forms the Combined Features which are used for classification. SVM with Binary Hierarchical Tree is used to classify the hyper spectral image. Results are validated with ground truth and accuracies are calculated.

Carbothermic Reduction of Mechanically Activated Mixtures of Celestite and Carbon

The effect of dry milling on the carbothermic reduction of celestite was investigated. Mixtures of celestite concentrate (98% SrSO4) and activated carbon (99% carbon) was milled for 1 and 24 hours in a planetary ball mill. Un-milled and milled mixtures and their products after carbothermic reduction were studied by a combination of XRD and TGA/DTA experiments. The thermogravimetric analyses and XRD results showed that by milling celestite-carbon mixtures for one hour, the formation temperature of strontium sulfide decreased from about 720°C (in un-milled sample) to about 600°C, after 24 hours milling it decreased to 530°C. It was concluded that milling induces increasingly thorough mixing of the reactants to reduction occurring at lower temperatures

Pleurotus sajor-caju (PSC) Improves Nutrient Contents and Maintains Sensory Properties of Carbohydrate-based Products

The grey oyster mushroom, Pleurotus sajor-caju (PSC), is a common edible mushroom and is now grown commercially around the world for food. This fungus has been broadly used as food or food ingredients in various food products for a long time. To enhance the nutritional quality and sensory attributes of bakery-based products, PSC powder is used in the present study to partially replace wheat flour in baked product formulations. The nutrient content and sensory properties of rice-porridge and unleavened bread (paratha) incorporated with various levels of PSC powder were studied. These food items were formulated with either 0%, 2%, 4% or 6% of PSC powder. Results show PSC powder recorded β-glucan at 3.57g/100g. In sensory evaluation, consumers gave higher score to both rice-porridge and paratha bread containing 2-4% PSC compared to those that are not added with PSC powder. The paratha containing 4% PSC powder can be formulated with the intention in improving overall acceptability of paratha bread. Meanwhile, for rice-porridge, consumers prefer the formulated product added with 4% PSC powder. In conclusion, the addition of PSC powder to partially wheat flour can be recommended for the purpose of enhancing nutritional composition and maintaining the acceptability of carbohydrate-based products.

Emerging Wireless Standards - WiFi, ZigBee and WiMAX

The world of wireless telecommunications is rapidly evolving. Technologies under research and development promise to deliver more services to more users in less time. This paper presents the emerging technologies helping wireless systems grow from where we are today into our visions of the future. This paper will cover the applications and characteristics of emerging wireless technologies: Wireless Local Area Networks (WiFi-802.11n), Wireless Personal Area Networks (ZigBee) and Wireless Metropolitan Area Networks (WiMAX). The purpose of this paper is to explain the impending 802.11n standard and how it will enable WLANs to support emerging media-rich applications. The paper will also detail how 802.11n compares with existing WLAN standards and offer strategies for users considering higher-bandwidth alternatives. The emerging IEEE 802.15.4 (ZigBee) standard aims to provide low data rate wireless communications with high-precision ranging and localization, by employing UWB technologies for a low-power and low cost solution. WiMAX (Worldwide Interoperability for Microwave Access) is a standard for wireless data transmission covering a range similar to cellular phone towers. With high performance in both distance and throughput, WiMAX technology could be a boon to current Internet providers seeking to become the leader of next generation wireless Internet access. This paper also explores how these emerging technologies differ from one another.

Toward An Agreement on Semantic Web Architecture

There are many problems associated with the World Wide Web: getting lost in the hyperspace; the web content is still accessible only to humans and difficulties of web administration. The solution to these problems is the Semantic Web which is considered to be the extension for the current web presents information in both human readable and machine processable form. The aim of this study is to reach new generic foundation architecture for the Semantic Web because there is no clear architecture for it, there are four versions, but still up to now there is no agreement for one of these versions nor is there a clear picture for the relation between different layers and technologies inside this architecture. This can be done depending on the idea of previous versions as well as Gerber-s evaluation method as a step toward an agreement for one Semantic Web architecture.

Unsupervised Feature Selection Using Feature Density Functions

Since dealing with high dimensional data is computationally complex and sometimes even intractable, recently several feature reductions methods have been developed to reduce the dimensionality of the data in order to simplify the calculation analysis in various applications such as text categorization, signal processing, image retrieval, gene expressions and etc. Among feature reduction techniques, feature selection is one the most popular methods due to the preservation of the original features. In this paper, we propose a new unsupervised feature selection method which will remove redundant features from the original feature space by the use of probability density functions of various features. To show the effectiveness of the proposed method, popular feature selection methods have been implemented and compared. Experimental results on the several datasets derived from UCI repository database, illustrate the effectiveness of our proposed methods in comparison with the other compared methods in terms of both classification accuracy and the number of selected features.

Stock Portfolio Selection Using Chemical Reaction Optimization

Stock portfolio selection is a classic problem in finance, and it involves deciding how to allocate an institution-s or an individual-s wealth to a number of stocks, with certain investment objectives (return and risk). In this paper, we adopt the classical Markowitz mean-variance model and consider an additional common realistic constraint, namely, the cardinality constraint. Thus, stock portfolio optimization becomes a mixed-integer quadratic programming problem and it is difficult to be solved by exact optimization algorithms. Chemical Reaction Optimization (CRO), which mimics the molecular interactions in a chemical reaction process, is a population-based metaheuristic method. Two different types of CRO, named canonical CRO and Super Molecule-based CRO (S-CRO), are proposed to solve the stock portfolio selection problem. We test both canonical CRO and S-CRO on a benchmark and compare their performance under two criteria: Markowitz efficient frontier (Pareto frontier) and Sharpe ratio. Computational experiments suggest that S-CRO is promising in handling the stock portfolio optimization problem.

Characteristics of Suspended Solids Removal by Electrocoagulation

The electrochemical coagulation of a kaolin suspension was investigated at the currents of 0.06, 0.12, 0.22, 0.44, 0.85 A (corresponding to 0.68, 1.36, 2.50, 5.00, 9.66 mA·cm-2, respectively) for the contact time of 5, 10, 20, 30, and 50 min. The TSS removal efficiency at currents of 0.06 A, 0.12 A and 0.22 A increased with the amount of iron generated by the sacrificial anode, while the removal efficiencies did not increase proportionally with the amount of iron generated at the currents of 0.44 and 0.85 A, where electroflotation was clearly observed. Zeta potential measurement illustrated the presence of the highly positive charged particles created by sorption of highly charged polymeric metal hydroxyl species onto the negative surface charged kaolin particles at both low and high applied currents. The disappearance of the individual peaks after certain contact times indicated the attraction between these positive and negative charged particles causing agglomeration. It was concluded that charge neutralization of the individual species was not the only mechanism operating in the electrocoagulation process at any current level, but electrostatic attraction was likely to co-operate or mainly operate.

Effective Strategies for Teaching Cultural Competency to MSW Students in a Global Society

An ethical mandate of the social work profession in the United States is that BSW and MSW graduates are sufficiently prepared to both understand diverse cultural values and beliefs and offer services that are culturally sensitive and relevant to clients. This skill set is particularly important for social workers in the 21st Century, given the increasing globalization of the U.S. and world. The purpose of this paper is to outline a pedagogical model for teaching cultural competency that resulted in a significant increase in cultural competency for MSW graduates at Western Kentucky University (WKU). More specifically, this model is predicated on five specific culturally sensitive principles and activities that were found to be highly effective in conveying culturally relevant knowledge and skills to MSW students at WKU. Future studies can assess the effectiveness of these principles in other MSW programs across the U.S. and abroad.

Application of Tacit Knowledge from Professional Packaging Designer for Teaching Packaging Design

In the package design industry, there are a lot of tacit knowledge resided within each designer. The objectives are to capture them and compile it to be used as a teaching resource and to create a video clip of package design process as well as to evaluate its quality and learning effectiveness. Interview were used as a technique for capturing knowledge in brand design concept, differentiation, recognition, rank of recognition factor, consumer survey, knowledge about marketing, research, graphic design, the effect of color, and law and regulation. Video clip about package design were created. The clip consisted of both the speech and clip of actual process. The quality of the video in term of media was ranked as good while the content was ranked as excellent. The students- score on post-test was significantly greater than that of pretest (p>0.001).

On the Exact Solution of Non-Uniform Torsion for Beams with Asymmetric Cross-Section

This paper deals with the problem of non-uniform torsion in thin-walled elastic beams with asymmetric cross-section, removing the basic concept of a fixed center of twist, necessary in the Vlasov-s and Benscoter-s theories to obtain a warping stress field equivalent to zero. In this new torsion/flexure theory, despite of the classical ones, the warping function will punctually satisfy the first indefinite equilibrium equation along the beam axis and it wont- be necessary to introduce the classical congruence condition, to take into account the effect of the beam restraints. The solution, based on the Fourier development of the displacement field, is obtained assuming that the applied external torque is constant along the beam axis and on both beam ends the unit twist angle and the warping axial displacement functions are totally restrained. Finally, in order to verify the feasibility of the proposed method and to compare it with the classical theories, two applications are carried out. The first one, relative to an open profile, is necessary to test the numerical method adopted to find the solution; the second one, instead, is relative to a simplified containership section, considered as full restrained in correspondence of two adjacent transverse bulkheads.

A Supplier-Manufacturer Relationship Model for Teak Forest Carbon Sequestration and Teak Log Demand Fulfillment with Sustainability Consideration

Availability of raw materials is important for Indonesia as a furniture exporting country. Teak log as raw materials is supplied to the furniture industry by Perum Perhutani (PP). PP needs to involve carbon trading for nature conservation. PP also has an obligation in the Corporate Social Responsibility program. PP and furniture industry also must prosecute the regulations related to ecological issues and labor rights. This study has the objective to create the relationship model between supplier and manufacturer to fulfill teak log demand that involving teak forest carbon sequestration. A model is formulated as Goal Programming to get the favorable solution for teak log procurement and support carbon sequestration that considering economical, ecological, and social aspects of both supplier and manufacturer. The results show that the proposed model can be used to determine the teak log quantity involving carbon trading to achieve the seven goals to be satisfied the sustainability considerations.