Using New Technologies for Public Parking in Isfahan City

Cities expansion, urban travels increase, the technology development, the automobile price cheapen, and the families' income ascending cause the considerable increase in automobile numbers of the city. This fact has led to the traffic creation and the automobile parking site shortage in the city. Also in Esfahan metropolis, the parking lots shortage has been the great problem of this town; in addition, in designing and constructing of the parking sites the traditional methods are utilized which do not have a reasonable and optimized usage of the valuable urban lands. In this article, by introducing the prefabricate mechanized parking system which is inexpensive, simple and quick, and occupies very small space, therefore provides the high content of parking site for the cities, we can eliminate the parking space shortage difficulty of the cities. The achieved results of this research represent that an optimized utilization of the existent urban spaces for parking site construction has not been accomplished. By employing the new parking site technologies such as mechanization categorized parking sites and the capacity prefabricate mechanized of each parking space have become 8 multiples; in this case, the valuable urban lands can be used in an optimized way.

Design and Layout of Two Stage High Band Width Operational Amplifier

This paper presents the design and layout of a two stage, high speed operational amplifiers using standard 0.35um CMOS technology. The design procedure involves designing the bias circuit, the differential input pair, and the gain stage using CAD tools. Both schematic and layout of the operational amplifier along with the comparison in the results of the two has been presented. The operational amplifier designed, has a gain of 93.51db at low frequencies. It has a gain bandwidth product of 55.07MHz, phase margin of 51.9º and a slew rate of 22v/us for a load of capacitor of 10pF.

Structural Design Strategy of Double-Eccentric Butterfly Valve using Topology Optimization Techniques

In this paper, the shape design process is briefly discussed emphasizing the use of topology optimization in the conceptual design stage. The basic idea is to view feasible domains for sensitivity region concepts. In this method, the main process consists of two steps: as the design moves further inside the feasible domain using Taguchi method, and thus becoming more successful topology optimization, the sensitivity region becomes larger. In designing a double-eccentric butterfly valve, related to hydrodynamic performance and disc structure, are discussed where the use of topology optimization has proven to dramatically improve an existing design and significantly decrease the development time of a shape design. Computational Fluid Dynamics (CFD) analysis results demonstrate the validity of this approach.

Computer Aided Docking Studies on Antiviral Drugs for SARS

Severe acute respiratory syndrome (SARS) is a respiratory disease in humans which is caused by the SARS coronavirus. The treatment of coronavirus-associated SARS has been evolving and so far there is no consensus on an optimal regimen. The mainstream therapeutic interventions for SARS involve broad-spectrum antibiotics and supportive care, as well as antiviral agents and immunomodulatory therapy. The Protein- Ligand interaction plays a significant role in structural based drug designing. In the present work we have taken the receptor Angiotensin converting enzyme 2 and identified the drugs that are commonly used against SARS. They are Lopinavir, Ritonavir, Ribavirin, and Oseltamivir. The receptor Angiotensin converting enzyme 2 (ACE-2) was docked with above said drugs and the energy value obtained are as follows, Lopinavir (-292.3), Ritonavir (-325.6), Oseltamivir (- 229.1), Ribavirin (-208.8). Depending on the least energy value we have chosen the best two drugs out of the four conventional drugs. We tried to improve the binding efficiency and steric compatibility of the two drugs namely Ritonavir and Lopinavir. Several modifications were made to the probable functional groups (phenylic, ketonic groups in case of Ritonavir and carboxylic groups in case of Lopinavir respectively) which were interacting with the receptor molecule. Analogs were prepared by Marvin Sketch software and were docked using HEX docking software. Lopinavir analog 8 and Ritonavir analog 11 were detected with significant energy values and are probable lead molecule. It infers that some of the modified drugs are better than the original drugs. Further work can be carried out to improve the steric compatibility of the drug based upon the work done above for a more energy efficient binding of the drugs to the receptor.

Data Structures and Algorithms of Intelligent Web-Based System for Modular Design

In recent years, new product development became more and more competitive and globalized, and the designing phase is critical for the product success. The concept of modularity can provide the necessary foundation for organizations to design products that can respond rapidly to market needs. The paper describes data structures and algorithms of intelligent Web-based system for modular design taking into account modules compatibility relationship and given design requirements. The system intelligence is realized by developed algorithms for choice of modules reflecting all system restrictions and requirements. The proposed data structure and algorithms are illustrated by case study of personal computer configuration. The applicability of the proposed approach is tested through a prototype of Web-based system.

DNA Computing for an Absolute 1-Center Problem: An Evolutionary Approach

Deoxyribonucleic Acid or DNA computing has emerged as an interdisciplinary field that draws together chemistry, molecular biology, computer science and mathematics. Thus, in this paper, the possibility of DNA-based computing to solve an absolute 1-center problem by molecular manipulations is presented. This is truly the first attempt to solve such a problem by DNA-based computing approach. Since, part of the procedures involve with shortest path computation, research works on DNA computing for shortest path Traveling Salesman Problem, in short, TSP are reviewed. These approaches are studied and only the appropriate one is adapted in designing the computation procedures. This DNA-based computation is designed in such a way that every path is encoded by oligonucleotides and the path-s length is directly proportional to the length of oligonucleotides. Using these properties, gel electrophoresis is performed in order to separate the respective DNA molecules according to their length. One expectation arise from this paper is that it is possible to verify the instance absolute 1-center problem using DNA computing by laboratory experiments.

Design of Speed and Power Control System for Wind Turbine with Reference Tracking Method

This paper is focusing on designing a control system for wind turbine which can control the speed and output power according to arbitrary algorithm. Reference Tracking Method is used to control the turbine spinning speed in order to increase its output energy.

MONPAR - A Page Replacement Algorithm for a Spatiotemporal Database

For a spatiotemporal database management system, I/O cost of queries and other operations is an important performance criterion. In order to optimize this cost, an intense research on designing robust index structures has been done in the past decade. With these major considerations, there are still other design issues that deserve addressing due to their direct impact on the I/O cost. Having said this, an efficient buffer management strategy plays a key role on reducing redundant disk access. In this paper, we proposed an efficient buffer strategy for a spatiotemporal database index structure, specifically indexing objects moving over a network of roads. The proposed strategy, namely MONPAR, is based on the data type (i.e. spatiotemporal data) and the structure of the index structure. For the purpose of an experimental evaluation, we set up a simulation environment that counts the number of disk accesses while executing a number of spatiotemporal range-queries over the index. We reiterated simulations with query sets with different distributions, such as uniform query distribution and skewed query distribution. Based on the comparison of our strategy with wellknown page-replacement techniques, like LRU-based and Prioritybased buffers, we conclude that MONPAR behaves better than its competitors for small and medium size buffers under all used query-distributions.

Design A Situated Learning Environment Using Mixed Reality Technology - A Case Study

Mixed Reality (MR) is one of the newest technologies explored in education. It promises the potential to promote teaching and learning and making learners- experience more “engaging". However, there still lack of research on designing a virtual learning environment using MR technology. In this paper, we describe the Mixed Reality technology, the characteristics of situated learning as instructional design for virtual environment using mixed reality technology. We also explain a case study that implemented those design and also the system overview.

Forces Association-Based Active Contour

A welded structure must be inspected to guarantee that the weld quality meets the design requirements to assure safety and reliability. However, X-ray image analyses and defect recognition with the computer vision techniques are very complex. Most difficulties lie in finding the small, irregular defects in poor contrast images which requires pre processing to image, extract, and classify features from strong background noise. This paper addresses the issue of designing methodology to extract defect from noisy background radiograph with image processing. Based on the use of actives contours this methodology seems to give good results

Dynamic TDMA Slot Reservation Protocol for QoS Provisioning in Cognitive Radio Ad Hoc Networks

In this paper, we propose a dynamic TDMA slot reservation (DTSR) protocol for cognitive radio ad hoc networks. Quality of Service (QoS) guarantee plays a critically important role in such networks. We consider the problem of providing QoS guarantee to users as well as to maintain the most efficient use of scarce bandwidth resources. According to one hop neighboring information and the bandwidth requirement, our proposed protocol dynamically changes the frame length and the transmission schedule. A dynamic frame length expansion and shrinking scheme that controls the excessive increase of unassigned slots has been proposed. This method efficiently utilizes the channel bandwidth by assigning unused slots to new neighboring nodes and increasing the frame length when the number of slots in the frame is insufficient to support the neighboring nodes. It also shrinks the frame length when half of the slots in the frame of a node are empty. An efficient slot reservation protocol not only guarantees successful data transmissions without collisions but also enhance channel spatial reuse to maximize the system throughput. Our proposed scheme, which provides both QoS guarantee and efficient resource utilization, be employed to optimize the channel spatial reuse and maximize the system throughput. Extensive simulation results show that the proposed mechanism achieves desirable performance in multichannel multi-rate cognitive radio ad hoc networks.

Conceptual Frameworks of Carbon Credit Registry System for Thailand

This research explores on the development of the structure of Carbon Credit Registry System those accords to the need of future events in Thailand. This research also explores the big picture of every connected system by referring to the design of each system, the Data Flow Diagram, and the design in term of the system-s data using DES standard. The purpose of this paper is to show how to design the model of each system. Furthermore, this paper can serve as guideline for designing an appropriate Carbon Credit Registry System.

Separation of Manganese and Cadmium from Cobalt Electrolyte Solution by Solvent Extraction

Impurity metals such as manganese and cadmium from high-tenor cobalt electrolyte solution were selectively removed by solvent extraction method using Co-D2EHPA after converting the functional group of D2EHPA with Co2+ ions. The process parameters such as pH, organic concentration, O/A ratio, kinetics etc. were investigated and the experiments were conducted by batch tests in the laboratory bench scale. Results showed that a significant amount of manganese and cadmium can be extracted using Co-D2EHPA for the optimum processing of cobalt electrolyte solution at equilibrium pH about 3.5. The McCabe-Thiele diagram, constructed from the extraction studies showed that 100% impurities can be extracted through four stages for manganese and three stages for cadmium using O/A ratio of 0.65 and 1.0, respectively. From the stripping study, it was found that 100% manganese and cadmium can be stripped from the loaded organic using 0.4 M H2SO4 in a single contact. The loading capacity of Co-D2EHPA by manganese and cadmium were also investigated with different O/A ratio as well as with number of stages of contact of aqueous and organic phases. Valuable information was obtained for the designing of an impurities removal process for the production of pure cobalt with less trouble in the electrowinning circuit.

Improved Modulo 2n +1 Adder Design

Efficient modulo 2n+1 adders are important for several applications including residue number system, digital signal processors and cryptography algorithms. In this paper we present a novel modulo 2n+1 addition algorithm for a recently represented number system. The proposed approach is introduced for the reduction of the power dissipated. In a conventional modulo 2n+1 adder, all operands have (n+1)-bit length. To avoid using (n+1)-bit circuits, the diminished-1 and carry save diminished-1 number systems can be effectively used in applications. In the paper, we also derive two new architectures for designing modulo 2n+1 adder, based on n-bit ripple-carry adder. The first architecture is a faster design whereas the second one uses less hardware. In the proposed method, the special treatment required for zero operands in Diminished-1 number system is removed. In the fastest modulo 2n+1 adders in normal binary system, there are 3-operand adders. This problem is also resolved in this paper. The proposed architectures are compared with some efficient adders based on ripple-carry adder and highspeed adder. It is shown that the hardware overhead and power consumption will be reduced. As well as power reduction, in some cases, power-delay product will be also reduced.

Designing and Manufacturing High Voltage Pulse Generator with Adjustable Pulse and Monitoring Current and Voltage: Food Processing Application

Using strength Pulse Electrical Field (PEF) in food industries is a non-thermal process that can deactivate microorganisms and increase penetration in plant and animals tissues without serious impact on food taste and quality. In this paper designing and fabricating of a PEF generator has been presented. Pulse generation methods have been surveyed and the best of them selected. The equipment by controller set can generate square pulse with adjustable parameters such as amplitude 1-5kV, frequency 0.1-10Hz, pulse width 10-100s, and duty cycle 0-100%. Setting the number of pulses, and presenting the output voltage and current waveforms on the oscilloscope screen are another advantages of this equipment. Finally, some food samples were tested that yielded the satisfactory results. PEF applying had considerable effects on potato, banana and purple cabbage. It caused increase Brix factor from 0.05 to 0.15 in potato solution. It is also so effective in extraction color material from purple cabbage. In the last experiment effects of PEF voltages on color extraction of saffron scum were surveyed (about 6% increasing yield).

Static and Dynamic Three-Dimensional Finite Element Analysis of Pelvic Bone

The complex shape of the human pelvic bone was successfully imaged and modeled using finite element FE processing. The bone was subjected to quasi-static and dynamic loading conditions simulating the effect of both weight gain and impact. Loads varying between 500 – 2500 N (~50 – 250 Kg of weight) was used to simulate 3D quasi-static weight gain. Two different 3D dynamic analyses, body free fall at two different heights (1 and 2 m) and forced side impact at two different velocities (20 and 40 Km/hr) were also studied. The computed resulted stresses were compared for the four loading cases, where Von Misses stresses increases linearly with the weight gain increase under quasi-static loading. For the dynamic models, the Von Misses stress history behaviors were studied for the affected area and effected load with respect to time. The normalization Von Misses stresses with respect to the applied load were used for comparing the free fall and the forced impact load results. It was found that under the forced impact loading condition an over lapping behavior was noticed, where as for the free fall the normalized Von Misses stresses behavior was found to nonlinearly different. This phenomenon was explained through the energy dissipation concept. This study will help designers in different specialization in defining the weakest spots for designing different supporting systems.

Designing a Multilingual Auction Website for Selling Agricultural Products

The study aimed to identify the logical structure of data and particularities of developing and testing a website designed for selling farm products through online auctions. The research is based on a short literature review in the field and exploratory trials of some successful models from other industries, in order to identify the advantages of using such tool, as well as the optimal structure and functionality of an auction portal. In the last part, the study focuses on the results of testing the website by the potential beneficiaries. Conclusions of the study underlines that the particularities of some agricultural products could raise difficulties in the process of selling them through online auctions, but the use of such system it is perceived to bring significant improvements in the supply chain. The results of scientific investigations require a more detailed study regarding the importance of using quality standards for agricultural products sold via online auction, the impact that implementation of an online payment system could have on trade with agricultural products and problems which could arise in using the website in different countries.

Microwave LNA Design Based On Adaptive Network Fuzzy Inference and Evolutionary Optimization

This paper presents a novel approach for the design of microwave circuits using Adaptive Network Fuzzy Inference Optimizer (ANFIO). The method takes advantage of direct synthesis of subsections of the amplifier using very fast and accurate ANFIO models based on exact simulations using ADS. A mapping from course space to fine space known as space mapping is also used. The proposed synthesis approach takes into account the noise and scattering parameters due to parasitic elements to achieve optimal results. The overall ANFIO system is capable of designing different LNAs at different noise and scattering criteria. This approach offers significantly reduced time in the design of microwave amplifiers within the validity range of the ANFIO system. The method has been proven to work efficiently for a 2.4GHz LNA example. The S21 of 10.1 dB and noise figure (NF) of 2.7 dB achieved for ANFIO while S21 of 9.05 dB and NF of 2.6 dB achieved for ANN.

SOA and BPM Partnership: A Paradigm for Dynamic and Flexible Process and I.T. Management

Business Process Management (BPM) helps in optimizing the business processes inside an enterprise. But BPM architecture does not provide any help for extending the enterprise. Modern business environments and rapidly changing technologies are asking for brisk changes in the business processes. Service Oriented Architecture (SOA) can help in enabling the success of enterprise-wide BPM. SOA supports agility in software development that is directly related to achieve loose coupling of interacting software agents. Agility is a premium concern of the current software designing architectures. Together, BPM and SOA provide a perfect combination for enterprise computing. SOA provides the capabilities for services to be combined together and to support and create an agile, flexible enterprise. But there are still many questions to answer; BPM is better or SOA? and what is the future track of BPM and SOA? This paper tries to answer some of these important questions.

Neutronic Study of Two Reactor Cores Cooled with Light and Heavy Water Using Computation Method

Most HWRs currently use natural uranium fuel. Using enriched uranium fuel results in a significant improvement in fuel cycle costs and uranium utilization. On the other hand, reactivity changes of HWRs over the full range of operating conditions from cold shutdown to full power are small. This reduces the required reactivity worth of control devices and minimizes local flux distribution perturbations, minimizing potential problems due to transient local overheating of fuel. Analyzing heavy water effectiveness on neutronic parameters such as enrichment requirements, peaking factor and reactivity is important and should pay attention as primary concepts of a HWR core designing. Two nuclear nuclear reactors of CANDU-type and hexagonal-type reactor cores of 33 fuel assemblies and 19 assemblies in 1.04 P/D have been respectively simulated using MCNP-4C code. Using heavy water and light water as moderator have been compared for achieving less reactivity insertion and enrichment requirements. Two fuel matrixes of (232Th/235U)O2 and (238/235U)O2 have been compared to achieve more economical and safe design. Heavy water not only decreased enrichment needs, but it concluded in negative reactivity insertions during moderator density variations. Thorium oxide fuel assemblies of 2.3% enrichment loaded into the core of heavy water moderator resulted in 0.751 fission to absorption ratio and peaking factor of 1.7 using. Heavy water not only provides negative reactivity insertion during temperature raises which changes moderator density but concluded in 2 to 10 kg reduction of enrichment requirements, depend on geometry type.