The Affect of Ethnic Minority People: A Prediction by Gender and Marital Status

The study aimed to investigate whether the affect (experience of feeling or emotion) of ethnic minority people can be predicted by gender and marital status. Toward this end, positive affect and negative affect of 103 adult indigenous persons were measured. Analysis of data in multiple regressions demonstrated that both gender and marital status are significantly associated with positive affect (Gender: β=.318, p

Stress Variation around a Circular Hole in Functionally Graded Plate under Bending

The influence of material property variation on stress concentration factor (SCF) due to the presence of a circular hole in a functionally graded material (FGM) plate is studied in this paper. A numerical method based on complex variable theory of elasticity is used to investigate the problem. To achieve the material property, variation plate is decomposed into a number of rings. In this research work, Young’s modulus is assumed to be varying exponentially and it is found that stress concentration factor can be reduced by increasing Young’s modulus progressively away from the hole.

FT-NIR Method to Determine Moisture in Gluten Free Rice Based Pasta during Drying

Pasta is one of the most widely consumed food products around the world. Rapid determination of the moisture content in pasta will assist food processors to provide online quality control of pasta during large scale production. Rapid Fourier transform near-infrared method (FT-NIR) was developed for determining moisture content in pasta. A calibration set of 150 samples, a validation set of 30 samples and a prediction set of 25 samples of pasta were used. The diffuse reflection spectra of different types of pastas were measured by FT-NIR analyzer in the 4,000-12,000cm-1 spectral range. Calibration and validation sets were designed for the conception and evaluation of the method adequacy in the range of moisture content 10 to 15 percent (w.b) of the pasta. The prediction models based on partial least squares (PLS) regression, were developed in the near-infrared. Conventional criteria such as the R2, the root mean square errors of cross validation (RMSECV), root mean square errors of estimation (RMSEE) as well as the number of PLS factors were considered for the selection of three pre-processing (vector normalization, minimum-maximum normalization and multiplicative scatter correction) methods. Spectra of pasta sample were treated with different mathematic pre-treatments before being used to build models between the spectral information and moisture content. The moisture content in pasta predicted by FT-NIR methods had very good correlation with their values determined via traditional methods (R2 = 0.983), which clearly indicated that FT-NIR methods could be used as an effective tool for rapid determination of moisture content in pasta. The best calibration model was developed with min-max normalization (MMN) spectral pre-processing (R2 = 0.9775). The MMN pre-processing method was found most suitable and the maximum coefficient of determination (R2) value of 0.9875 was obtained for the calibration model developed.

Alternative Splicingof an Arabidopsis Gene, At2g24600, Encoding Ankyrin-Repeat Protein

In Arabidopsis, several genes encoding proteins with ankyrin repeats and transmembrane domains (AtANKTM) have been identified as mediators of biotic and abiotic stress responses. It has been known that the expression of an AtANKTM gene, At2g24600, is induced in response to abiotic stress and that there are four splicing variants derived from this locus. In this study, by RT-PCR and sequencing analysis, an unknown splicing variant of the At2g24600 transcript was identified. Based on differences in the predicted amino acid sequences, the five splicing variants are divided into three groups. The three predicted proteins are highly homologous, yet have different numbers of ankyrinrepeats and transmembrane domains. It is generally considered that ankyrin repeats mediate protein-protein interaction and that the number oftransmembrane domains affects membrane topology of proteins. The protein variants derived from the At2g24600 locus may have different molecular functions each other.

Application of Universal Distribution Factors for Real-Time Complex Power Flow Calculation

Complex power flow distribution factors, which relate line complex power flows to the bus injected complex powers, have been widely used in various power system planning and analysis studies. In particular, AC distribution factors have been used extensively in the recent power and energy pricing studies in free electricity market field. As was demonstrated in the existing literature, many of the electricity market related costing studies rely on the use of the distribution factors. These known distribution factors, whether the injection shift factors (ISF’s) or power transfer distribution factors (PTDF’s), are linear approximations of the first order sensitivities of the active power flows with respect to various variables. This paper presents a novel model for evaluating the universal distribution factors (UDF’s), which are appropriate for an extensive range of power systems analysis and free electricity market studies. These distribution factors are used for the calculations of lines complex power flows and its independent of bus power injections, they are compact matrix-form expressions with total flexibility in determining the position on the line at which line flows are measured. The proposed approach was tested on IEEE 9-Bus system. Numerical results demonstrate that the proposed approach is very accurate compared with exact method.

ELD79-LGD2006 Transformation Techniques Implementation and Accuracy Comparison in Tripoli Area, Libya

During the last decade, Libya established a new Geodetic Datum called Libyan Geodetic Datum 2006 (LGD 2006) by using GPS, whereas the ground traversing method was used to establish the last Libyan datum which was called the Europe Libyan Datum 79 (ELD79). The current research paper introduces ELD79 to LGD2006 coordinate transformation technique, the accurate comparison of transformation between multiple regression equations and the three – parameters model (Bursa-Wolf). The results had been obtained show that the overall accuracy of stepwise multi regression equations is better than that can be determined by using Bursa-Wolf transformation model.

Residual Stress in Ground WC-Co Coatings

High velocity oxygen fuel (HVOF) spray technique is one of the leading technologies that have been proposed as an alternative to the replacement of electrolytic hard chromium plating in a number of engineering applications. In this study, WC-Co powder was coated on AISI1045 steel using high velocity oxy fuel (HVOF) method. The sin2ψ method was used to evaluate the through thickness residual stress by means of XRD after mechanical layer removal process (only grinding). The average of through thickness residual stress using X-Ray diffraction was -400 MPa.

A South African Perspective on Self-Leadership Development for Women Engineering Students – A Pilot Study

Across the world, initiatives have been introduced to encourage women to enter into and remain in engineering fields. However, research has shown that many women leave engineering or suffer a loss of self-esteem and self-confidence compared to their male counterparts. To address this problem, a South African comprehensive university developed a self-leadership intervention pilot study in 2013, aimed at improving the self-efficacy of its female engineering students and increasing retention rates. This paper is a qualitative, descriptive, and interpretive study of the rationale and operational aspects of the Women in Engineering Leadership Association’s (WELA) self-leadership workshop. The objectives of this paper are to provide a framework for the design of a self-leadership workshop and to provide insight into the process of developing such a workshop specifically for women engineering students at a South African university. Finally, the paper proposes an evaluation process for the pilot workshop, which also provides a framework to improve future workshops. It is anticipated that the self-leadership development framework will be applicable to other higher education institutions wishing to improve women engineering student’s feelings of self-efficacy and therefore retention rates of women in engineering.

Improving Concrete Properties with Fibers Addition

This study investigated the improvement in concrete properties with addition of cellulose, steel, carbon and PET fibers. Each fiber was added at four percentages to the fresh concrete, which was moist-cured for 28-days and then tested for compressive, flexural and tensile strengths. Changes in strength and increases in cost were analyzed. Results showed that addition of cellulose caused a decrease between 9.8% and 16.4% in compressive strength. This range may be acceptable as cellulose fibers can significantly increase the concrete resistance to fire, and freezing and thawing cycles. Addition of steel fibers to concreteincreased the compressive strength by up to 20%. Increases 121.5% and 80.7% were reported in tensile and flexural strengths respectively. Carbon fibers increased flexural and tensile strengths by up to 11% and 45%, respectively. Concrete strength properties decreased after the addition of PET fibers. Results showed that improvement in strength after addition of steel and carbon fibers may justify the extra cost of fibers.

A Pole Radius Varying Notch Filter with Transient Suppression for Electrocardiogram

Noise removal techniques play a vital role in the performance of electrocardiographic (ECG) signal processing systems. ECG signals can be corrupted by various kinds of noise such as baseline wander noise, electromyographic interference, and powerline interference. One of the significant challenges in ECG signal processing is the degradation caused by additive 50 or 60 Hz powerline interference. This work investigates the removal of power line interference and suppression of transient response for filtering noise corrupted ECG signals. We demonstrate the effectiveness of infinite impulse response (IIR) notch filter with time varying pole radius for improving the transient behavior. The temporary change in the pole radius of the filter diminishes the transient behavior. Simulation results show that the proposed IIR filter with time varying pole radius outperforms traditional IIR notch filters in terms of mean square error and transient suppression.

High Volume Fly Ash Concrete for Paver Blocks

Use of concrete paver blocks is becoming increasingly popular. They are used for paving of approaches, paths and parking areas including their application in pre-engineered buildings and pavements. This paper discusses the results of an experimental study conducted on Fly Ash Concrete with the aim to report its suitability for concrete paver blocks. In this study, the effect of varying proportions of fly ash, 20% to 40%, on compressive strength and flexural strength of concrete has been evaluated. The mix designs studied are M-30, M-35, M-40 and M-50. It is observed that all the fly ash based mixes are able to achieve the required compressive and flexural strengths. In comparison to control mixes, the compressive and flexural strengths of the fly ash based mixes are found to be slightly less at 7-days and 28 days and a little more at 90 days.

Multi-Linear Regression Based Prediction of Mass Transfer by Multiple Plunging Jets

The paper aims to compare the performance of vertical and inclined multiple plunging jets and to model and predict their mass transfer capacity by multi-linear regression based approach. The multiple vertical plunging jets have jet impact angle of θ = 90O; whereas, multiple inclined plunging jets have jet impact angle of θ = 60O. The results of the study suggests that mass transfer is higher for multiple jets, and inclined multiple plunging jets have up to 1.6 times higher mass transfer than vertical multiple plunging jets under similar conditions. The derived relationship, based on multi-linear regression approach, has successfully predicted the volumetric mass transfer coefficient (KLa) from operational parameters of multiple plunging jets with a correlation coefficient of 0.973, root mean square error of 0.002 and coefficient of determination of 0.946. The results suggests that predicted overall mass transfer coefficient is in good agreement with actual experimental values; thereby, suggesting the utility of derived relationship based on multi-linear regression based approach and can be successfully employed in modeling mass transfer by multiple plunging jets.

Performance Study of Cascade Refrigeration System Using Alternative Refrigerants

Cascade refrigeration systems employ series of single stage vapor compression units which are thermally coupled with evaporator/condenser cascades. Different refrigerants are used in each of the circuit depending on the optimum characteristics shown by the refrigerant for a particular application. In the present research study, a steady state thermodynamic model is developed which simulates the working of an actual cascade system. The model provides COP and all other system parameters e.g. total compressor work, temperature, pressure, enthalpy and entropy at different state points. The working fluid in low temperature circuit (LTC) is CO2 (R744) while Ammonia (R717), Propane (R290), Propylene (R1270), R404A and R12 are the refrigerants in high temperature circuit (HTC). The performance curves of Ammonia, Propane, Propylene, and R404A are compared with R12 to find its nearest substitute. Results show that Ammonia is the best substitute of R12.

Design and Manufacture of Non-Contact Moving Load for Experimental Analysis of Beams

Dynamic tests are an important step of the design of engineering structures, because the accuracy of predictions of theoretical–numerical procedures can be assessed. In experimental test of moving loads that is one of the major research topics, the load is modeled as a simple moving mass or a small vehicle. This paper deals with the applicability of Non-contact Moving Load (NML) for vibration analysis. For this purpose, an experimental set-up is designed to generate the different types of NML including constant and harmonic. The proposed method relies on pressurized air which is useful, especially when dealing with fragile or sensitive structures. To demonstrate the performance of this system, the set-up is employedfor a modal analysis of a beam and detecting crack of the beam.The obtained results indicate that the experimental set-up for NML can be an attractive alternative to the moving load problems.

A Design of the Organic Rankine Cycle for the Low Temperature Waste Heat

A presentation of the design of the Organic Rankine cycle (ORC) with heat regeneration and superheating processes is a subject of this paper. The maximum temperature level in the ORC is considered to be 110°C and the maximum pressure varies up to 2.5MPa. The selection process of the appropriate working fluids, thermal design and calculation of the cycle and its components are described. With respect to the safety, toxicity, flammability, price and thermal cycle efficiency, the working fluid selected is R134a. As a particular example, the thermal design of the condenser used for the ORC engine with a theoretical thermal power of 179 kW was introduced. The minimal heat transfer area for a completed condensation was determined to be approximately 520m2. 

Unsteady Transient Free Convective Flow of an Incompressible Viscous Fluid under Influence of Uniform Transverse Magnetic Field

The unsteady transient free convection flow of an incompressible dissipative viscous fluid between parallel plates at different distances have been investigated under porous medium. Due to presence of heat flux under the influence of uniform transverse magnetic field the velocity distribution and the temperature distribution, is shown graphically. Since exact solution is not possible so we find parametrical solution by perturbation technique. The result is shown in graph for different parameters. We notice that heat generation effects fluid velocity keeping in which of free convection which cools.

Structural Behavior of Lightweight Concrete Made With Scoria Aggregates and Mineral Admixtures

Structural lightweight concrete is used primarily to reduce the dead-load weight in concrete members such as floors in high-rise buildings and bridge decks. With given materials, it is generally desired to have the highest possible strength/unit weight ratio with the lowest cost of concrete. The work presented herein is part of an ongoing research project that investigates the properties of concrete mixes containing locally available Scoria lightweight aggregates and mineral admixtures. Properties considered included: workability, unit weight, compressive strength, and splitting tensile strength. Test results indicated that developing structural lightweight concretes (SLWC) using locally available Scoria lightweight aggregates and specific blends of silica fume and fly ash seems to be feasible. The stress-strain diagrams plotted for the structural LWC mixes developed in this investigation were comparable to a typical stress-strain diagram for normal weight concrete with relatively larger strain capacity at failure in case of LWC.

Hydraulic Unbalance in Oil Injected Twin Rotary Screw Compressor Vibration Analysis (A Case History Related to Iran Oil Industries)

Vibration analysis of screw compressors is one of the most challenging cases in preventive maintenance. This kind of equipment considered as vibration bad actor facilities in industrial plants. On line condition monitoring systems developed too much in recent years. The high frequency vibration of ball bearings, gears, male and female caused complex fast Fourier transform (FFT) and time wave form (TWF) in screw compressors. The male and female randomly are sent to balance shop for balancing operation. This kind of operation usually caused some bending in rotors during the process that could cause further machining in such equipment. This kind of machining operation increased the vibration analysis complexity beside some process characteristic abnormality like inlet and out let pressure and temperature. In this paper mechanical principal and different type of screw compressors explained. Besides, some new condition monitoring systems and techniques for screw compressors discussed. Finally, one of the common behavior of oil injected twin rotary screw compressors called hydraulic unbalance that usually occurred after machining operation of male or female and have some specific characteristics in FFT and TWF discussed in details through a case history related to Iran oil industries.

Contribution of Electrochemical Treatment in Treating Textile Dye Wastewater

The introduction of more stringent pollution regulations, in relation to financial and social pressures for sustainable development, has pressed toward limiting the volumes of industrial and domestic effluents discharged into the environment - as well as to increase the efforts within research and development of new or more efficient wastewater treatment technologies. Considering both discharge volume and effluent composition, wastewater generated by the textile industry is rated as the most polluting among all industrial sectors. The pollution load is mainly due to spent dye baths, which are composed of unreacted dyes, dispersing agents, surfactants, salts and organics. In the present investigation, the textile dye wastewater was characterized by high color, chemical oxygen demand (COD), total dissolved solids (TDS) and pH. Electrochemical oxidation process for four plate electrodes was carried out at five different current intensities, out of which 0.14A has achieved maximum percentage removal of COD with 75% and 83% of color. The COD removal rate in kg COD/h/m2 decreases with increase in the current intensity. The energy consumption increases with increase in the current intensity. Hence, textile dye wastewater can be effectively pretreated by electrochemical oxidation method where the process limits objectionable color while leaving the COD associated with organics left for natural degradation thus causing a sustainable reduction in pollution load.

Techno-Legal Interplay of Domain Names: A Study with Reference to India

Internet has unfolded its potential and its users are now quite convinced that it is a cost effective, flexible, efficient and viable option to carry out different business activities disregard of any physical or geographical boundaries. These intrinsic properties of Internet have raised innumerable legal issues that are difficult to resolve within the boundaries of existing legal régime which has a different scheme of things. Internet has impacted most of the branches of law more particularly Intellectual property jurisprudence which has engendered many IP issues including interplay of trademark and domain names. There is neither any separate legislation nor any express provision in the existing Trademark Act, 1999, which is relatively recent in origin and enacted at the time when theses issued had seized the attention of the courts in other jurisdictions. A host of legal issues cropped by the intersection of trademark and domain names which have been left for the courts to decide. The courts in India have seized this opportunity and have laid down a number of principles. This paper appraises approaches adopted by Indian courts in resolving domain name disputes and compares them with theories evolved and established in other jurisdictions.