Key Strategies for a Competitive Supply Chain

In this era of competitiveness, there is a growing need for supply chains also to become competitive enough to handle pressures like varying customer’s expectations, low cost high quality products to be delivered at the minimum time and the most important is throat cutting competition at world wide scale. In the recent years, supply chain competitiveness has been, therefore, accepted as one of the most important philosophies in the supply chain literature and researchers have tried to identify variables of supply chain competitiveness. This paper highlights some of the concepts of supply chain competitiveness and tries to identify select variables on the basis of literature review. Further, the paper tries to highlight the importance of the identified variables in the achievement of supply chain competitiveness. The aim is to explore the concept and to motivate researchers to further investigate the unexplored areas of this important subject domain.

An Analysis of Eco-efficiency and GHG Emission of Olive Oil Production in Northeast of Portugal

Olive oil production sector plays an important role in Portuguese economy. It had a major growth over the last decade, increasing its weight in the overall national exports. International market penetration for Mediterranean traditional products is increasingly more demanding, especially in the Northern European markets, where consumers are looking for more sustainable products. Trying to support this growing demand this study addresses olive oil production under the environmental and eco-efficiency perspectives. The analysis considers two consecutive product life cycle stages: olive trees farming; and olive oil extraction in mills. Addressing olive farming, data collection covered two different organizations: a middle-size farm (~12ha) (F1) and a large-size farm (~100ha) (F2). Results from both farms show that olive collection activities are responsible for the largest amounts of Green House Gases (GHG) emissions. In this activities, estimate for the Carbon Footprint per olive was higher in F2 (188g CO2e/kgolive) than in F1 (148g CO2e/kgolive). Considering olive oil extraction, two different mills were considered: one using a two-phase system (2P) and other with a three-phase system (3P). Results from the study of two mills show that there is a much higher use of water in 3P. Energy intensity (EI) is similar in both mills. When evaluating the GHG generated, two conditions are evaluated: a biomass neutral condition resulting on a carbon footprint higher in 3P (184g CO2e/Lolive oil) than in 2P (92g CO2e/Lolive oil); and a non-neutral biomass condition in which 2P increase its carbon footprint to 273g CO2e/Lolive oil. When addressing the carbon footprint of possible combinations among studied subsystems, results suggest that olive harvesting is the major source for GHG.

The Effect of Failure Rate on Repair and Maintenance Costs of Four Agricultural Tractor Models

In economical evaluation literature, although the combination of some variables such as repair and maintenance costs and accumulated use hours has been widely considered in determining of optimum life for tractor, no investigation has indicated the influence of failure rate on repair and maintenance costs. In this study, the owners of three hundred tractors, which include Massey Ferguson, John Deere and Universal, were interviewed, from five regions of Khouzestan Province. A regression model was used to predict the tractors annual repair and maintenance costs based on failure rate. Results showed that the maximum percentage of annual repair and maintenance costs occurred in engine parts for MF285, JD3140 and U650 tractors while these costs for tire, ring, ball bearing and operator seat were higher compared to other MF399 tractor systems. According to the results of the regression, the failure rate increase would lead to annual repair and maintenance costs increase for all tractors. But, of all the tractors, repair and maintenance costs of JD3140 tractors extremely affected by the failure rate increase.

Understanding ICT Behaviors among Health Workers in Sub-Saharan Africa: A Cross-Sectional Study for Laboratory Persons in Uganda

A cross-sectional survey to ascertain the capacity of laboratory persons in using ICTs was conducted in 15 Ugandan districts (July-August 2013). A self-administered questionnaire served as data collection tool, interview guide and observation checklist. 69 questionnaires were filled, 12 interviews conducted, 45 HC observed. SPSS statistics 17.0 and SAS 9.2 software were used for entry and analyses. 69.35% of participants find it difficult to access a computer at work. Of the 30.65% who find it easy to access a computer at work, a significant 21.05% spend 0 hours on a computer daily. 60% of the participants cannot access internet at work. Of the 40% who have internet at work, a significant 20% lack email address but 20% weekly read emails weekly and 48% daily. It is viable/feasible to pilot informatics projects as strategies to build bridges develop skills for e-health landscape in laboratory services with a bigger financial muscle.

Effects of Drought Stress on Qualitative and Quantitative Traits of Mungbean

In order to investigate the effect of drought stress and row spacing on grain yield and associated traits of Mungbean, an experiment was conducted as a factorial in based on randomized complete block design with three replications in Ilam station, Iran during 2008-2009 growing season. This experiment was conducted in four stages on one kind of Mungbean named Gohar. The experimental factors including (80, 110 and 140mm cumulative evaporation from class A pan) and row spacing (25, 50, and 75cm) were selected. The results of the experiment showed that the varieties affected by the treatment showed significant differences. The highest total yield was obtained in the condition in which evaporation of water was 80mm. Of course some traits such as grain yield did not show a significant difference between the conditions in which evaporation of the irrigation water was 80 and 110mm. The traits under study also showed a significant difference to different raw spacing. Row spacing of 50cm had a higher total yield compared to other raw spaces. It was due to the higher number of pods per plant and grain weight. The interaction of drought stress and row spacing showed that in the condition in which the row space is 50 cm and the evaporation of the irrigation water is 80mm, the highest number of grain is achieved.

Improving Ride Comfort of a Bus Using Fuzzy Logic Controlled Suspension

In this study an active controller is presented for vibration suppression of a full-bus model. The bus is modeled having seven degrees of freedom. Using the achieved model via Lagrange Equations the system equations of motion are derived. The suspensions of the bus model include air springs with two auxiliary chambers are used. Fuzzy logic controller is used to improve the ride comfort. The numerical results, verifies that the presented fuzzy logic controller improves the ride comfort.

Kinematic Hardening Parameters Identification with Respect to Objective Function

Constitutive modeling of material behavior is becoming increasingly important in prediction of possible failures in highly loaded engineering components, and consequently, optimization of their design. In order to account for large number of phenomena that occur in the material during operation, such as kinematic hardening effect in low cycle fatigue behavior of steels, complex nonlinear material models are used ever more frequently, despite of the complexity of determination of their parameters. As a method for the determination of these parameters, genetic algorithm is good choice because of its capability to provide very good approximation of the solution in systems with large number of unknown variables. For the application of genetic algorithm to parameter identification, inverse analysis must be primarily defined. It is used as a tool to fine-tune calculated stress-strain values with experimental ones. In order to choose proper objective function for inverse analysis among already existent and newly developed functions, the research is performed to investigate its influence on material behavior modeling.

Baby Boom Generation in Singapore and Its Impact on Ageing

In Singapore, there are about 1 million baby boomers, defined as those born between 1947 and 1964. They constitute a sizeable proportion (about 30 per cent) of the resident population comprising Singapore citizens and permanent residents. The first batches of these baby boomers have already 65 years old by 2012. Thereafter, baby boomers will swell the ranks of the elderly population in Singapore until 2030. The baby boomers in this study are divided into broad groups, namely, the early baby boomers (born 1947-54) and late baby boomers (1955-64). Continuing decline in fertility and mortality rates in the past three decades as well as improvements in health care facilities and services have changed the demography of Singapore from a “pyramid-shape” young, post war baby boomers population to a rapidly ageing population. With the ageing of the baby boom generation, the population of Singapore is about to grey rapidly over the next three decades. As such, there is a need for Singapore to understand the profile, perceptions and aspirations of this group, and devise strategies to address the needs and concerns as well as opportunities that arise with the ageing of baby boomers are discussed and presented in this work.

Effectual Role of Local Level Partnership Schemes in Affordable Housing Delivery

Affordable housing delivery for low and lower middle income families is a prominent problem in many developing countries; governments alone are unable to address this challenge due to diverse financial and regulatory constraints, and the private sector's contribution is rare and assists only middle-income households even when institutional and legal reforms are conducted to persuade it to go down market. Also, the market-enabling policy measures advocated by the World Bank since the early nineties have been strongly criticized and proven to be inappropriate to developing country contexts, where it is highly unlikely that the formal private sector can reach low income population. In addition to governments and private developers, affordable housing delivery systems involve an intricate network of relationships between a diverse range of actors. Collaboration between them was proven to be vital, and hence, an approach towards partnership schemes for affordable housing delivery has emerged. The basic premise of this paper is that addressing housing affordability challenges in Egypt demands direct public support, as markets and market actors alone would never succeed in delivering decent affordable housing to low and lower middle income groups. It argues that this support would ideally be through local level partnership schemes, with a leading decentralized local government role, and partners being identified according to specific local conditions. It attempts to identify major attributes that would ensure the fulfillment of the goals of such schemes in the Egyptian context. This is based upon evidence from diversified worldwide experiences, in addition to the main outcomes of a questionnaire that was conducted to specialists and chief actors in the field.

Urban Planning Formulation Problems in China and the Corresponding Optimization Ideas under the Vision of the Hypercycle Theory

Systematic Science reveals the complex nonlinear mechanisms of behavior in urban system. However, when confronted with such system, most city planners in China are still utilizing simple linear thinking to learn and understand this open complex giant system. In this paper, the hypercycle theory was introduced, which is one of the basis theories of systematic science. Based on the analysis of the reasons for the failure of current urban planning in China, and in consideration of the nonlinear characteristics of the urban system as well, optimization ideas for urban planning formulation were presented such as the shift from blueprint planning to progressive planning and from the rigid urban planning management control to its dynamically monitor and in time feedback.

Finding Viable Pollution Routes in an Urban Network under a Predefined Cost

In an urban area the determination of transportation routes should be planned so as to minimize the provoked pollution taking into account the cost of such routes. In the sequel these routes are cited as pollution routes. The transportation network is expressed by a weighted graph G=(V,E,D,P) where every vertex represents a location to be served and E contains unordered pairs (edges) of elements in V that indicate a simple road. The distances / cost and a weight that depict the provoked air pollution by a vehicle transition at every road are assigned to each road as well. These are the items of set D and P respectively. Furthermore the investigated pollution routes must not exceed predefined corresponding values concerning the route cost and the route pollution level during the vehicle transition. In this paper we present an algorithm that generates such routes in order that the decision maker selects the most appropriate one. 

Investigations of Flow Field with Different Turbulence Models on NREL Phase VI Blade

Wind energy is one of the clean renewable energy. However, the low frequency (20-200HZ) noise generated from the wind turbine blades, which bothers the residents, becomes the major problem to be developed. It is useful for predicting the aerodynamic noise by flow field and pressure distribution analysis on the wind turbine blades. Therefore, the main objective of this study is to use different turbulence models to analyze the flow field and pressure distributions of the wing blades. Three-dimensional Computation Fluid Dynamics (CFD) simulation of the flow field was used to calculate the flow phenomena for the National Renewable Energy Laboratory (NREL) Phase VI horizontal axis wind turbine rotor. Two different flow cases with different wind speeds were investigated: 7m/s with 72rpm and 15m/s with 72rpm. Four kinds of RANS-based turbulence models, Standard k-ε, Realizable k-ε, SST k-ω, and v2f, were used to predict and analyze the results in the present work. The results show that the predictions on pressure distributions with SST k-ω and v2f turbulence models have good agreements with experimental data.

Solubility of Water in CO2 Mixtures at Pipeline Operation Conditions

Carbon capture, transport and underground storage have become a major solution to reduce CO2 emissions from power plants and other large CO2 sources. A big part of this captured CO2 stream is transported at high pressure dense phase conditions and stored in offshore underground depleted oil and gas fields. CO2 is also transported in offshore pipelines to be used for enhanced oil and gas recovery. The captured CO2 stream with impurities may contain water that causes severe corrosion problems, flow assurance failure and might damage valves and instrumentations. Thus, free water formation should be strictly prevented. The purpose of this work is to study the solubility of water in pure CO2 and in CO2 mixtures under real pipeline pressure (90-150 bar) and temperature operation conditions (5-35°C). A set up was constructed to generate experimental data. The results show the solubility of water in CO2 mixtures increasing with the increase of the temperature or/and with the increase in pressure. A drop in water solubility in CO2 is observed in the presence of impurities. The data generated were then used to assess the capabilities of two mixture models: the GERG-2008 model and the EOS-CG model. By generating the solubility data, this study contributes to determine the maximum allowable water content in CO2 pipelines.

Energy Efficient Shading Strategies for Windows of Hospital ICUs in the Desert

Hospitals, everywhere, are considered heavy energy consumers. Hospital Intensive Care Unit spaces pose a special challenge, where design guidelines requires the provision of external windows for daylighting and external view. Window protection strategies could be employed to reduce energy loads without detriment effect on comfort or health care. This paper addresses the effectiveness of using various window strategies on the annual cooling, heating and lighting energy use of a typical Hospital Intensive Unit space. Series of experiments were performed using the EnergyPlus simulation software for a typical Intensive Care Unit (ICU) space in Cairo, located in the Egyptian desert. This study concluded that the use of shading systems is more effective in conserving energy in comparison with glazing of different types, in the Cairo ICUs. The highest energy savings in the West and South orientations were accomplished by external perforated solar screens, followed by overhangs positioned at a protection angle of 45°.

Local Buckling of Web-Core and Foam-Core Sandwich Panels

Sandwich construction is widely accepted as a method of construction especially in the aircraft industry. It is a type of stressed skin construction formed by bonding two thin faces to a thick core, the faces resist all of the applied edge loads and provide all or nearly all of the required rigidities, the core spaces the faces to increase cross section moment of inertia about common neutral axis and transmit shear between them provides a perfect bond between core and faces is made. Material for face sheets can be of metal or reinforced plastics laminates, core material can be metallic cores of thin sheets forming corrugation or honeycomb, or non metallic core of Balsa wood, plastic foams, or honeycomb made of reinforced plastics. For in plane axial loading web core and web-foam core Sandwich panels can fail by local buckling of plates forming the cross section with buckling wave length of the order of length of spacing between webs. In this study local buckling of web core and web-foam core Sandwich panels is carried out for given materials of facing and core, and given panel overall dimension for different combinations of cross section geometries. The Finite Strip Method is used for the analysis, and Fortran based computer program is developed and used.

A Comprehensive Approach in Calculating the Impact of the Ground on Radiated Electromagnetic Fields Due to Lightning

The influence of finite ground conductivity is of great importance in calculating the induced voltages from the radiated electromagnetic fields due to lightning. In this paper, we try to give a comprehensive approach to calculate the impact of the ground on the radiated electromagnetic fields to lightning. The vertical component of lightning electric field is calculated with a reasonable approximation assuming a perfectly conducting ground in case the observation point does not exceed a few kilometers from the lightning channel. However, for distant observation points the radiated vertical component of lightning electric field is attenuated due finitely conducting ground. The attenuation is calculated using the expression elaborated for both low and high frequencies. The horizontal component of the electric field, however, is more affected by a finite conductivity of a ground. Besides, the contribution of the horizontal component of the electric field, to induced voltages on an overhead transmission line, is greater than that of the vertical component. Therefore, the calculation of the horizontal electric field is great concern for the simulation of lightning-induced voltages. For field to transmission lines coupling the ground impedance is calculated for early time behavior and for low frequency range.

Energy Efficient Construction and the Seismic Resistance of Passive Houses

Recently, an increasing trend of passive and low-energy buildings transferring form non earthquake-prone to earthquake-prone regions has thrown out the question about the seismic safety of such buildings. The paper describes the most commonly used thermal insulating materials and the special details, which could be critical from the point of view of earthquake resistance. The most critical appeared to be the cases of buildings founded on the RC foundation slab lying on a thermal insulation (TI) layer made of extruded polystyrene (XPS). It was pointed out that in such cases the seismic response of such buildings might differ to response of their fixed based counterparts. The main parameters that need special designers’ attention are: the building’s lateral top displacement, the ductility demand of the superstructure, the foundation friction coefficient demand, the maximum compressive stress in the TI layer and the percentage of the uplifted foundation. The analyses have shown that the potentially negative influences of inserting the TI under the foundation slab could be expected only for slender high-rise buildings subjected to severe earthquakes. Oppositely it was demonstrated for the foundation friction coefficient demand which could exceed the capacity value yet in the case of low-rise buildings subjected to moderate earthquakes. Some suggestions to prevent the horizontal shifts are also given.

Assessment of Downy mildew Resistance (Peronospora farinosa) in a Quinoa (Chenopodium quinoa Willd.) Germplasm

Seventy-nine accessions, including two local wild species (Chenopodium album and C. murale) and several cultivated quinoa lines developed through recurrent selection in Morocco were screened for their resistance against Peronospora farinose, the causal agent of downy mildew disease. The method of artificial inoculation on detached healthy leaves taken from the middle stage of the plant was used. Screened accessions showed different levels of quantitative resistance to downy mildew as they were scored through the calculation of their area under disease progress curve and their two resistance components, the incubation period and the latent period. Significant differences were found between accessions regarding the three criteria (Incubation Period, Latent Period and Area Under Diseases Progress Curve). Accessions M2a and S938/1 were ranked resistant as they showed the longest Incubation Period (7 days) and Latent Period (12 days) and the lowest area under diseases progress curve (4). Therefore, M24 is the most susceptible accession as it has presented the highest area under diseases progress curve (34.5) and the shortest Incubation Period (1 day) and Latent Period (3 days). In parallel to this evaluation approach, the accession resistance was confirmed under the field conditions through natural infection by using the tree-leaf method. The high correlation found between detached leaf inoculation method and field screening under natural infection allows us to use this laboratory technique with sureness in further selection works.

One Typical Jacket Platform’s Reactions in Front of Sea Water Level Variations

Demanding structural safety under various loading conditions, has focused attention on their variation and structural elements behavior due to these variations. Jacket structures are designed for a specific water level (LAT). One of the important issues about these kinds of structures is the water level rise. For example, the level of water in the Caspian Sea has risen by 2.5m in the last fifteen years and is continuing to rise. In this paper, the structural behavior of one typical shallow or medium water jacket platform (a four-leg steel jacket platform in 55m water depth) under water level rise has been studied. The time history of Von Mises stress and nodal displacement has chosen for evaluating structural behavior. The results show that dependent on previous water depth and structural elements position; different structural elements have different behavior due to water level rise.

Nice Stadium: Design of a Flat Single Layer ETFE Roof

In order to host the Football Euro in 2016, many French cities have launched architectural competitions in recent years to improve the quality of their stadiums. The winning project in Nice was designed by Wilmotte architects together with Elioth structural engineers. It has a capacity of 35,000 seats.Its roof structure consists of a complex 3D shape timber and steel lattice and is covered by 25,000m² of ETFE, 10,500m² of PES-PVC fabric and 8,500m² of photovoltaic panels. This paper focuses on the ETFE part of the cover. The stadium is one of the first constructions to use flat single layer ETFE on such a big area. Due to its relatively recent appearance in France, ETFE structures are not yet covered by any regulations and the existing codes for fabric structures cannot be strictly applied. Rather, they are considered as cladding systems and therefore have to be approved by an “Appréciation Technique d’Expérimentation” (ATEx), during which experimental tests have to be performed. We explain the method that we developed to justify the ETFE, which eventually led to bi-axial tests to clarify the allowable stress in the film.