Compensation of Power Quality Disturbances Using DVR

One of the key aspects of power quality improvement in power system is the mitigation of voltage sags/swells and flicker. Custom power devices have been known as the best tools for voltage disturbances mitigation as well as reactive power compensation. Dynamic Voltage Restorer (DVR) which is the most efficient and effective modern custom power device can provide the most commercial solution to solve several problems of power quality in distribution networks. This paper deals with analysis and simulation technique of DVR based on instantaneous power theory which is a quick control to detect signals. The main purpose of this work is to remove three important disturbances including voltage sags/swells and flicker. Simulation of the proposed method was carried out on two sample systems by using Matlab software environment and the results of simulation show that the proposed method is able to provide desirable power quality in the presence of wide range of disturbances.

One Typical Jacket Platform’s Reactions in Front of Sea Water Level Variations

Demanding structural safety under various loading conditions, has focused attention on their variation and structural elements behavior due to these variations. Jacket structures are designed for a specific water level (LAT). One of the important issues about these kinds of structures is the water level rise. For example, the level of water in the Caspian Sea has risen by 2.5m in the last fifteen years and is continuing to rise. In this paper, the structural behavior of one typical shallow or medium water jacket platform (a four-leg steel jacket platform in 55m water depth) under water level rise has been studied. The time history of Von Mises stress and nodal displacement has chosen for evaluating structural behavior. The results show that dependent on previous water depth and structural elements position; different structural elements have different behavior due to water level rise.