The Comparison of Some Soil Quality Indexes in Different Land uses of Ghareh Aghaj Watershed of Semirom, Isfahan, Iran

Land use change, if not based on proper scientific investigation affects other physical, chemical, and biological properties of soil and leading to increased destruction and erosion. It was imperative to study the effects of changing rangelands to farmlands on some Soil quality indexes. Undisturbed soil samples were collected from the depths of 0-10 and 10-30 centimeter in pasture with good vegetation cover(GP), pasture with medium vegetation cover(MP), abandoned dry land farming(ADF) and degraded dry land farming(DDF) land uses in Ghareh Aghaj watershed of Isfahan province. The results revealed that organic matter(OM), cation exchange capacity(CEC) and available potassium(AK) decreasing in the depth of 0-10 centimeter were 66.6, 38.8 and 70 percent and in the depth of 10-30 centimeter were 58, 61.4 and 83.5 percent respectively in DDF comparison with GP. Concerning to the results, it seems that land use change can decrease soil quality and increase soil degradation and lead in undesirable consequences.

Applying Tabu Search Algorithm in Public Transport: A Case Study for University Students in Mauritius

In this paper, the Tabu search algorithm is used to solve a transportation problem which consists of determining the shortest routes with the appropriate vehicle capacity to facilitate the travel of the students attending the University of Mauritius. The aim of this work is to minimize the total cost of the distance travelled by the vehicles in serving all the customers. An initial solution is obtained by the TOUR algorithm which basically constructs a giant tour containing all the customers and partitions it in an optimal way so as to produce a set of feasible routes. The Tabu search algorithm then makes use of a search procedure, a swapping procedure and the intensification and diversification mechanism to find the best set of feasible routes.

Using Radio Frequency Identification Technology in Supply Chain Management

The radio frequency identification (RFID) is a technology for automatic identification of items, particularly in supply chain, but it is becoming increasingly important for industrial applications. Unlike barcode technology that detects the optical signals reflected from barcode labels, RFID uses radio waves to transmit the information from an RFID tag affixed to the physical object. In contrast to today most often use of this technology in warehouse inventory and supply chain, the focus of this paper is an overview of the structure of RFID systems used by RFID technology and it also presents a solution based on the application of RFID for brand authentication, traceability and tracking, by implementing a production management system and extending its use to traders.

Highly Scalable, Reversible and Embedded Image Compression System

A new method for low complexity image coding is presented, that permits different settings and great scalability in the generation of the final bit stream. This coding presents a continuoustone still image compression system that groups loss and lossless compression making use of finite arithmetic reversible transforms. Both transformation in the space of color and wavelet transformation are reversible. The transformed coefficients are coded by means of a coding system in depending on a subdivision into smaller components (CFDS) similar to the bit importance codification. The subcomponents so obtained are reordered by means of a highly configure alignment system depending on the application that makes possible the re-configure of the elements of the image and obtaining different levels of importance from which the bit stream will be generated. The subcomponents of each level of importance are coded using a variable length entropy coding system (VBLm) that permits the generation of an embedded bit stream. This bit stream supposes itself a bit stream that codes a compressed still image. However, the use of a packing system on the bit stream after the VBLm allows the realization of a final highly scalable bit stream from a basic image level and one or several enhance levels.

Assessing the Relation between Theory of Multiple Algebras and Universal Algebras

In this study, we examine multiple algebras and algebraic structures derived from them and by stating a theory on multiple algebras; we will show that the theory of multiple algebras is a natural extension of the theory of universal algebras. Also, we will treat equivalence relations on multiple algebras, for which the quotient constructed modulo them is a universal algebra and will study the basic relation and the fundamental algebra in question. In this study, by stating the characteristic theorem of multiple algebras, we show that the theory of multiple algebras is a natural extension of the theory of universal algebras.

WLAN Positioning Based on Joint TOA and RSS Characteristics

WLAN Positioning has been presented by many approaches in literatures using the characteristics of Received Signal Strength (RSS), Time of Arrival (TOA) or Time Difference of Arrival (TDOA), Angle of Arrival (AOA) and cell ID. Among these, RSS approach is the simplest method to implement because there is no need of modification on both access points and client devices whereas its accuracy is terrible due to physical environments. For TOA or TDOA approach, the accuracy is quite acceptable but most researches have to modify either software or hardware on existing WLAN infrastructure. The scales of modifications are made on only access card up to the changes in protocol of WLAN. Hence, it is an unattractive approach to use TOA or TDOA for positioning system. In this paper, the new concept of merging both RSS and TOA positioning techniques is proposed. In addition, the method to achieve TOA characteristic for positioning WLAN user without any extra modification necessarily appended in the existing system is presented. The measurement results confirm that the proposed technique using both RSS and TOA characteristics provides better accuracy than using only either RSS or TOA approach.

Algebraic Quantum Error Correction Codes

A systematic and exhaustive method based on the group structure of a unitary Lie algebra is proposed to generate an enormous number of quantum codes. With respect to the algebraic structure, the orthogonality condition, which is the central rule of generating quantum codes, is proved to be fully equivalent to the distinguishability of the elements in this structure. In addition, four types of quantum codes are classified according to the relation of the codeword operators and some initial quantum state. By linking the unitary Lie algebra with the additive group, the classical correspondences of some of these quantum codes can be rendered.

Application of Micro-continuum Approach in the Estimation of Snow Drift Density, Velocity and Mass Transport in Hilly Bound Cold Regions

We estimate snow velocity and snow drift density on hilly terrain under the assumption that the drifting snow mass can be represented using a micro-continuum approach (i.e. using a nonclassical mechanics approach assuming a class of fluids for which basic equations of mass, momentum and energy have been derived). In our model, the theory of coupled stress fluids proposed by Stokes [1] has been employed for the computation of flow parameters. Analyses of bulk drift velocity, drift density, drift transport and mass transport of snow particles have been carried out and computations made, considering various parametric effects. Results are compared with those of classical mechanics (logarithmic wind profile). The results indicate that particle size affects the flow characteristics significantly.

Context Generation with Image Based Sensors: An Interdisciplinary Enquiry on Technical and Social Issues and their Implications for System Design

Image data holds a large amount of different context information. However, as of today, these resources remain largely untouched. It is thus the aim of this paper to present a basic technical framework which allows for a quick and easy exploitation of context information from image data especially by non-expert users. Furthermore, the proposed framework is discussed in detail concerning important social and ethical issues which demand special requirements in system design. Finally, a first sensor prototype is presented which meets the identified requirements. Additionally, necessary implications for the software and hardware design of the system are discussed, rendering a sensor system which could be regarded as a good, acceptable and justifiable technical and thereby enabling the extraction of context information from image data.

400 kW Six Analytical High Speed Generator Designs for Smart Grid Systems

High Speed PM Generators driven by micro-turbines are widely used in Smart Grid System. So, this paper proposes comparative study among six classical, optimized and genetic analytical design cases for 400 kW output power at tip speed 200 m/s. These six design trials of High Speed Permanent Magnet Synchronous Generators (HSPMSGs) are: Classical Sizing; Unconstrained optimization for total losses and its minimization; Constrained optimized total mass with bounded constraints are introduced in the problem formulation. Then a genetic algorithm is formulated for obtaining maximum efficiency and minimizing machine size. In the second genetic problem formulation, we attempt to obtain minimum mass, the machine sizing that is constrained by the non-linear constraint function of machine losses. Finally, an optimum torque per ampere genetic sizing is predicted. All results are simulated with MATLAB, Optimization Toolbox and its Genetic Algorithm. Finally, six analytical design examples comparisons are introduced with study of machines waveforms, THD and rotor losses.

A Novel SVM-Based OOK Detector in Low SNR Infrared Channels

Support Vector Machine (SVM) is a recent class of statistical classification and regression techniques playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM is applied to an infrared (IR) binary communication system with different types of channel models including Ricean multipath fading and partially developed scattering channel with additive white Gaussian noise (AWGN) at the receiver. The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these channel stochastic models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to classical binary signal maximum likelihood detection using a matched filter driven by On-Off keying (OOK) modulation. We found that the performance of SVM is superior to that of the traditional optimal detection schemes used in statistical communication, especially for very low signal-to-noise ratio (SNR) ranges. For large SNR, the performance of the SVM is similar to that of the classical detectors. The implication of these results is that SVM can prove very beneficial to IR communication systems that notoriously suffer from low SNR at the cost of increased computational complexity.

Optimal Power Allocation to Diversity Branches of Cooperative MISO Sensor Networks

In the context of sensor networks, where every few dB saving counts, the novel node cooperation schemes are reviewed where MIMO techniques play a leading role. These methods could be treated as joint approach for designing physical layer of their communication scenarios. Then we analyzed the BER performance of transmission diversity schemes under a general fading channel model and proposed a power allocation strategy to the transmitting sensor nodes. This approach is then compared to an equal-power assignment method and its performance enhancement is verified by the simulation. Another key point of the contribution lies in the combination of optimal power allocation and sensor nodes- cooperation in a transmission diversity regime (MISO). Numerical results are given through figures to demonstrate the optimality and efficiency of proposed combined approach.

The Supplier Relationship Management Market Trends

The paper introduces and discusses definitions and concepts from the supplier relationship management area. This review has the goal to provide readers with the basic conditions to understand the market mechanisms and the technological developments of the SRM market. Further on, the work gives a picture of the actual business environment in which the SRM vendors are in, and the main trends in the field, based on the main SRM functionalities i.e. e-Procurement, e-Sourcing and Supplier Enablement, which indicates users and software providers the future technological developments and practises that will take place in this area in the next couple of years.

Investigation of Some Technical Indexes inStock Forecasting Using Neural Networks

Training neural networks to capture an intrinsic property of a large volume of high dimensional data is a difficult task, as the training process is computationally expensive. Input attributes should be carefully selected to keep the dimensionality of input vectors relatively small. Technical indexes commonly used for stock market prediction using neural networks are investigated to determine its effectiveness as inputs. The feed forward neural network of Levenberg-Marquardt algorithm is applied to perform one step ahead forecasting of NASDAQ and Dow stock prices.

Hydrogen Sulphide Removal Using a Novel Biofilter Media

Air emissions from waste treatment plants often consist of a combination of Volatile Organic Compounds (VOCs) and odors. Hydrogen sulfide is one of the major odorous gases present in the waste emissions coming from municipal wastewater treatment facilities. Hydrogen sulfide (H2S) is odorous, highly toxic and flammable. Exposure to lower concentrations can result in eye irritation, a sore throat and cough, shortness of breath, and fluid in the lungs. Biofiltration has become a widely accepted technology for treating air streams containing H2S. When compared with other nonbiological technologies, biofilter is more cost-effective for treating large volumes of air containing low concentrations of biodegradable compounds. Optimization of biofilter media is essential for many reasons such as: providing a higher surface area for biofilm growth, low pressure drop, physical stability, and good moisture retention. In this work, a novel biofilter media is developed and tested at a pumping station of a municipality located in the United Arab Emirates (UAE). The media is found to be very effective (>99%) in removing H2S concentrations that are expected in pumping stations under steady state and shock loading conditions.

Analysis and Circuit Modeling of APDs

In this paper a new method for increasing the speed of SAGCM-APD is proposed. Utilizing carrier rate equations in different regions of the structure, a circuit model for the structure is obtained. In this research, in addition to frequency response, the effect of added new charge layer on some transient parameters like slew-rate, rising and falling times have been considered. Finally, by trading-off among some physical parameters such as different layers widths and droppings, a noticeable decrease in breakdown voltage has been achieved. The results of simulation, illustrate some features of proposed structure improvement in comparison with conventional SAGCM-APD structures.

FEM Analysis of the Interaction between a Piezoresistive Tactile Sensor and Biological Tissues

The present paper presents a finite element model and analysis for the interaction between a piezoresistive tactile sensor and biological tissues. The tactile sensor is proposed for use in minimally invasive surgery to deliver tactile information of biological tissues to surgeons. The proposed sensor measures the relative hardness of soft contact objects as well as the contact force. Silicone rubbers were used as the phantom of biological tissues. Finite element analysis of the silicone rubbers and the mechanical structure of the sensor were performed using COMSOL Multiphysics (v3.4) environment. The simulation results verify the capability of the sensor to be used to differentiate between different kinds of silicone rubber materials.

Evaluating Complexity – Ethical Challenges in Computational Design Processes

Complexity, as a theoretical background has made it easier to understand and explain the features and dynamic behavior of various complex systems. As the common theoretical background has confirmed, borrowing the terminology for design from the natural sciences has helped to control and understand urban complexity. Phenomena like self-organization, evolution and adaptation are appropriate to describe the formerly inaccessible characteristics of the complex environment in unpredictable bottomup systems. Increased computing capacity has been a key element in capturing the chaotic nature of these systems. A paradigm shift in urban planning and architectural design has forced us to give up the illusion of total control in urban environment, and consequently to seek for novel methods for steering the development. New methods using dynamic modeling have offered a real option for more thorough understanding of complexity and urban processes. At best new approaches may renew the design processes so that we get a better grip on the complex world via more flexible processes, support urban environmental diversity and respond to our needs beyond basic welfare by liberating ourselves from the standardized minimalism. A complex system and its features are as such beyond human ethics. Self-organization or evolution is either good or bad. Their mechanisms are by nature devoid of reason. They are common in urban dynamics in both natural processes and gas. They are features of a complex system, and they cannot be prevented. Yet their dynamics can be studied and supported. The paradigm of complexity and new design approaches has been criticized for a lack of humanity and morality, but the ethical implications of scientific or computational design processes have not been much discussed. It is important to distinguish the (unexciting) ethics of the theory and tools from the ethics of computer aided processes based on ethical decisions. Urban planning and architecture cannot be based on the survival of the fittest; however, the natural dynamics of the system cannot be impeded on grounds of being “non-human". In this paper the ethical challenges of using the dynamic models are contemplated in light of a few examples of new architecture and dynamic urban models and literature. It is suggested that ethical challenges in computational design processes could be reframed under the concepts of responsibility and transparency.

Automatically Driven Vector for Guidewire Segmentation in 2D and Biplane Fluoroscopy

The segmentation of endovascular tools in fluoroscopy images can be accurately performed automatically or by minimum user intervention, using known modern techniques. It has been proven in literature, but no clinical implementation exists so far because the computational time requirements of such technology have not yet been met. A classical segmentation scheme is composed of edge enhancement filtering, line detection, and segmentation. A new method is presented that consists of a vector that propagates in the image to track an edge as it advances. The filtering is performed progressively in the projected path of the vector, whose orientation allows for oriented edge detection, and a minimal image area is globally filtered. Such an algorithm is rapidly computed and can be implemented in real-time applications. It was tested on medical fluoroscopy images from an endovascular cerebral intervention. Ex- periments showed that the 2D tracking was limited to guidewires without intersection crosspoints, while the 3D implementation was able to cope with such planar difficulties.