Analysis and Circuit Modeling of APDs

In this paper a new method for increasing the speed of SAGCM-APD is proposed. Utilizing carrier rate equations in different regions of the structure, a circuit model for the structure is obtained. In this research, in addition to frequency response, the effect of added new charge layer on some transient parameters like slew-rate, rising and falling times have been considered. Finally, by trading-off among some physical parameters such as different layers widths and droppings, a noticeable decrease in breakdown voltage has been achieved. The results of simulation, illustrate some features of proposed structure improvement in comparison with conventional SAGCM-APD structures.




References:
[1] F. Ma, S. Wang, and X. Li; "Monte Carlo simulation of low noise
avalanche photodiodes with heterojunction," Appl. Phys. Lett., vol.
92,no. 2, pp. 4791-4795, 2002.
[2] G.Wang, T.Tokumitsu, I.Hanawa, Y.Yoneda, K.Sato, andM.
Kobayashi,"Atime-delayequivalent-circuitmodel of ultrafast p-i-n
photodiodes" IEEE Trans .Microw.Theory Tech., vol. 51, no. 4, pp
1227-1233,Apr.2003.
[3] F. Ma, S. Wang, and X. Li; "Monte Carlo simulation of low noise
avalanche photodiodes with heterojunction," Appl. Phys. Lett., vol.
92,no. 2, pp. 4791-4795, 2002.
[4] F. Barzegar, M. H. Sheikhi, "A New Physical Modeling for
Multiquantum Well Structure APD Considering Nonuniformity of
Electric Field in Active Region", International Journal of Electrical and
Electronics Engineering, vol.2, no. 1, pp. 45-52, 2009
[5] N.Duan,S.Wang,X.G.Zheng,X.Li,LiNing,J.C.Campbell,C.Wang,andL.A
.Coldren,"Detrimental effect of impact ionizationin the absorption
regionon the frequency response and excess noise performance of
InGaAs-InAlAs SACM avalanche photodiodes," IEEE J.
Quant.Electron., vol. 41, no. 4, pp. 568-572, Apr. 2005.
[6] Y. Zhao, S. He, "Multiplication characteristics of InP/InGaAs avalanche
photodiodes with a thicker charge layer," Optical Communications
265,pp. 476-480, 2006.
[7] S. An, M. J. Deen, "Low-frequency noise in single growth planar
separate absorption, grading, charge, and multiplication avalanche
photodiodes," IEEE Trans. Electron. Dev. 47, pp. 537-543 (2000).
[8] L. E. Tarof, "Planar InP/InGaAs avalanche photodetector with a gainbandwidth
product in excess of 100 GHz,"Electron. Lett. 27, pp. 34-36
(1991).
[9] H. Nie, O. Baklenov, P. Yuan, C. Lenox, B. G. Streetman, and J. C.
Campbell, "Quantum-dot resonant-cavity separate absorption, charge,
and multiplication avalanche photodiode operating at 1.06 um," IEEE
Photon. Technol .Lett. 10, pp. 1009-1011 (1998).
[10] C. Lenox, H. Nie, P. Yuan, G. Kinsey, A. L. Homles, Jr., B. G.
Streetman, and J. C. Campbell, "Resonant-cavity InGaAs-InAlAs
avalanche photodiodes with gain-bandwidth product of 290 GHz," IEEE
Photon. Technol. Lett. 11, pp. 1162-1164 (1999).
[11] A.Banoushi, M.R.Kardan, M.Ataee Naeini, "A circuit model simulation
for separate absorption, grading, charge, and multiplication avalanche
photodiodes." Solid-State Electronics, 49871- 877 (2005)