Phase Error Accumulation Methodology for On-Chip Cell Characterization

This paper describes the design of new method of propagation delay measurement in micro and nanostructures during characterization of ASIC standard library cell. Providing more accuracy timing information about library cell to the design team we can improve a quality of timing analysis inside of ASIC design flow process. Also, this information could be very useful for semiconductor foundry team to make correction in technology process. By comparison of the propagation delay in the CMOS element and result of analog SPICE simulation. It was implemented as digital IP core for semiconductor manufacturing process. Specialized method helps to observe the propagation time delay in one element of the standard-cell library with up-to picoseconds accuracy and less. Thus, the special useful solutions for VLSI schematic to parameters extraction, basic cell layout verification, design simulation and verification are announced.

Feature Based Unsupervised Intrusion Detection

The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.

Forecasting Enrollment Model Based on First-Order Fuzzy Time Series

This paper proposes a novel improvement of forecasting approach based on using time-invariant fuzzy time series. In contrast to traditional forecasting methods, fuzzy time series can be also applied to problems, in which historical data are linguistic values. It is shown that proposed time-invariant method improves the performance of forecasting process. Further, the effect of using different number of fuzzy sets is tested as well. As with the most of cited papers, historical enrollment of the University of Alabama is used in this study to illustrate the forecasting process. Subsequently, the performance of the proposed method is compared with existing fuzzy time series time-invariant models based on forecasting accuracy. It reveals a certain performance superiority of the proposed method over methods described in the literature.

Water Quality from a Mixed Land-Use Catchment in Miri, Sarawak

Urbanization has been found to impact stormwater runoff quantity and quality. A study catchment with mixed land use, residential and industrial were investigated and the water quality discharged from the catchment were sampled and tested for four basic water quality parameters; BOD5, NH3-N, NO3-N and P. One dry weather flow and several stormwater runoff were sampled. Results were compared to the USEPA stormwater quality benchmark values and the Interim National Water Quality Standards for Malaysia (INWQS). The concentration of the parameters was found to vary significantly between storms and the pollutant of concern was found to be NO3-N.

Implementation of IEEE 802.15.4 Packet Analyzer

A packet analyzer is a tool for debugging sensor network systems and is convenient for developers. In this paper, we introduce a new packet analyzer based on an embedded system. The proposed packet analyzer is compatible with IEEE 802.15.4, which is suitable for the wireless communication standard for sensor networks, and is available for remote control by adopting a server-client scheme based on the Ethernet interface. To confirm the operations of the packet analyzer, we have developed two types of sensor nodes based on PIC4620 and ATmega128L microprocessors and tested the functions of the proposed packet analyzer by obtaining the packets from the sensor nodes.

Improved Automated Classification of Alcoholics and Non-alcoholics

In this paper, several improvements are proposed to previous work of automated classification of alcoholics and nonalcoholics. In the previous paper, multiplayer-perceptron neural network classifying energy of gamma band Visual Evoked Potential (VEP) signals gave the best classification performance using 800 VEP signals from 10 alcoholics and 10 non-alcoholics. Here, the dataset is extended to include 3560 VEP signals from 102 subjects: 62 alcoholics and 40 non-alcoholics. Three modifications are introduced to improve the classification performance: i) increasing the gamma band spectral range by increasing the pass-band width of the used filter ii) the use of Multiple Signal Classification algorithm to obtain the power of the dominant frequency in gamma band VEP signals as features and iii) the use of the simple but effective knearest neighbour classifier. To validate that these two modifications do give improved performance, a 10-fold cross validation classification (CVC) scheme is used. Repeat experiments of the previously used methodology for the extended dataset are performed here and improvement from 94.49% to 98.71% in maximum averaged CVC accuracy is obtained using the modifications. This latest results show that VEP based classification of alcoholics is worth exploring further for system development.

Fuzzy Logic Based Coordinated Voltage Control for Distribution Network with Distributed Generations

This paper discusses the implementation of a fuzzy logic based coordinated voltage control for a distribution system connected with distributed generations (DGs). The connection of DGs has created a challenge for the distribution network operators to keep the voltage in the system within its acceptable limits. Intelligent centralized or coordinated voltage control schemes have proven to be more reliable due to its ability to provide more control and coordination with the communication with other network devices. In this work, voltage control using fuzzy logic by coordinating three methods of control, power factor control, on load tap changer and generation curtailment is implemented on a distribution network test system. The results show that the fuzzy logic based coordination is able to keep the voltage within its allowable limits. 

Active Suspension - Case Study on Robust Control

Automotive suspension system is important part of car comfort and safety. In this article automotive active suspension with linear motor as actuator is designed using H-infinity control. This paper is focused on comparison of different controller designed for quart, half or full-car model (and always used for “full" car). Special attention is placed on energy demand of the whole system. Each controller configuration is simulated and then verified on the hydraulic quarter car test bed.

NOHIS-Tree: High-Dimensional Index Structure for Similarity Search

In Content-Based Image Retrieval systems it is important to use an efficient indexing technique in order to perform and accelerate the search in huge databases. The used indexing technique should also support the high dimensions of image features. In this paper we present the hierarchical index NOHIS-tree (Non Overlapping Hierarchical Index Structure) when we scale up to very large databases. We also present a study of the influence of clustering on search time. The performance test results show that NOHIS-tree performs better than SR-tree. Tests also show that NOHIS-tree keeps its performances in high dimensional spaces. We include the performance test that try to determine the number of clusters in NOHIS-tree to have the best search time.

In Vivo Evaluation of Stable Cream Containing Flavonoids on Hydration and TEWL of Human Skin

Antioxidants contribute to endogenous photoprotection and are important for the maintenance of skin health. The study was carried out to compare the skin hydration and transepidermal water loss (TEWL) effects of a stable cosmetic preparation containing flavonoids, following two applications a day over a period of tenth week. The skin trans-epidermal water loss and skin hydration effect was measured at the beginning and up to the end of study period of ten weeks. Any effect produced was measured by Corneometer and TEWA meter (Non-invasive probe). Two formulations were developed for this study design. Formulation one the control formulation in which no apple juice extract( Flavonoids) was incorporated while second one was the active formulation in which the apple juice extract (3%) containing flavonoids was incorporated into water in oil emulsion using Abil EM 90 as an emulsifier. Stable formulations (control and Active) were applied on human cheeks (n = 12) for a study period of 10 weeks. Result of each volunteer of skin hydration and TEWL was measured by corneometer and TEWA meter. By using ANOVA and Paired sample t test as a statistical evaluation, result of both base and formulation were compared. Statistical significant results (p≤0.05) were observed regarding skin hydration and TEWL when two creams, control and Formulation were compared. It showed that desired formulation (Active) may have interesting application as an active moisturizing cream on healthy skin.

Optimal Location of Multi Type Facts Devices for Multiple Contingencies Using Particle Swarm Optimization

In deregulated operating regime power system security is an issue that needs due thoughtfulness from researchers in the horizon of unbundling of generation and transmission. Electric power systems are exposed to various contingencies. Network contingencies often contribute to overloading of branches, violation of voltages and also leading to problems of security/stability. To maintain the security of the systems, it is desirable to estimate the effect of contingencies and pertinent control measurement can be taken on to improve the system security. This paper presents the application of particle swarm optimization algorithm to find the optimal location of multi type FACTS devices in a power system in order to eliminate or alleviate the line over loads. The optimizations are performed on the parameters, namely the location of the devices, their types, their settings and installation cost of FACTS devices for single and multiple contingencies. TCSC, SVC and UPFC are considered and modeled for steady state analysis. The selection of UPFC and TCSC suitable location uses the criteria on the basis of improved system security. The effectiveness of the proposed method is tested for IEEE 6 bus and IEEE 30 bus test systems.

The Performance of the Character-Access on the Checking Phase in String Searching Algorithms

A new algorithm called Character-Comparison to Character-Access (CCCA) is developed to test the effect of both: 1) converting character-comparison and number-comparison into character-access and 2) the starting point of checking on the performance of the checking operation in string searching. An experiment is performed; the results are compared with five algorithms, namely, Naive, BM, Inf_Suf_Pref, Raita, and Circle. With the CCCA algorithm, the results suggest that the evaluation criteria of the average number of comparisons are improved up to 74.0%. Furthermore, the results suggest that the clock time required by the other algorithms is improved in range from 28% to 68% by the new CCCA algorithm

In-situ Chemical Oxidation of Residual TCE by Permanganate in Epikarst

In-situ chemical oxidation (ISCO) has been widely used for source zone remediation of Dense Nonaqueous Phase Liquids (DNAPLs) in subsurface environments. DNAPL source zones for karst aquifers are generally located in epikarst where the DNAPL mass is trapped either in karst soil or at the regolith contact with carbonate bedrock. This study aims to investigate the performance of oxidation of residual trichloroethylene found in such environments by potassium permanganate. Batch and flow cell experiments were conducted to determine the kinetics and the mass removal rate of TCE. pH change, Cl production, TCE and MnO4 destruction were monitored routinely during experiments. Nonreactive tracer tests were also conducted prior and after the oxidation process to determine the influence of oxidation on flow conditions. The results show that oxidant consumption rate of the calcareous epikarst soil was significant and the oxidant demand was determined to be 20 g KMnO4/kg soil. Oxidation rate of residual TCE (1.26x10-3 s-1) was faster than the oxidant consumption rate of the soil (2.54 - 2.92x10-4 s-1) at only high oxidant concentrations (> 40 mM KMnO4). Half life of TCE oxidation ranged from 7.9 to 10.7 min. Although highly significant fraction of residual TCE mass in the system was destroyed by permanganate oxidation, TCE concentration in the effluent remained above its MCL. Flow interruption tests indicate that efficiency of ISCO was limited by the rate of TCE dissolution and the rate-limited desorption of TCE. The residence time and the initial concentration of the oxidant in the source zone also controlled the efficiency of ISCO in epikarst.

Numerical Analysis and Sensitivity Study of Non-Premixed Combustion Using LES

Non-premixed turbulent combustion Computational Fluid Dynamics (CFD) has been carried out in a simplified methanefuelled coaxial jet combustor employing Large Eddy Simulation (LES). The objective of this study is to evaluate the performance of LES in modelling non-premixed combustion using a commercial software, FLUENT, and investigate the effects of the grid density and chemistry models employed on the accuracy of the simulation results. A comparison has also been made between LES and Reynolds Averaged Navier-Stokes (RANS) predictions. For LES grid sensitivity test, 2.3 and 6.2 million cell grids are employed with the equilibrium model. The chemistry model sensitivity analysis is achieved by comparing the simulation results from the equilibrium chemistry and steady flamelet models. The predictions of the mixture fraction, axial velocity, species mass fraction and temperature by LES are in good agreement with the experimental data. The LES results are similar for the two chemistry models but influenced considerably by the grid resolution in the inner flame and near-wall regions.

An Advanced Nelder Mead Simplex Method for Clustering of Gene Expression Data

The DNA microarray technology concurrently monitors the expression levels of thousands of genes during significant biological processes and across the related samples. The better understanding of functional genomics is obtained by extracting the patterns hidden in gene expression data. It is handled by clustering which reveals natural structures and identify interesting patterns in the underlying data. In the proposed work clustering gene expression data is done through an Advanced Nelder Mead (ANM) algorithm. Nelder Mead (NM) method is a method designed for optimization process. In Nelder Mead method, the vertices of a triangle are considered as the solutions. Many operations are performed on this triangle to obtain a better result. In the proposed work, the operations like reflection and expansion is eliminated and a new operation called spread-out is introduced. The spread-out operation will increase the global search area and thus provides a better result on optimization. The spread-out operation will give three points and the best among these three points will be used to replace the worst point. The experiment results are analyzed with optimization benchmark test functions and gene expression benchmark datasets. The results show that ANM outperforms NM in both benchmarks.

Time-Cost-Quality Trade-off Software by using Simplified Genetic Algorithm for Typical Repetitive Construction Projects

Time-Cost Optimization "TCO" is one of the greatest challenges in construction project planning and control, since the optimization of either time or cost, would usually be at the expense of the other. Since there is a hidden trade-off relationship between project and cost, it might be difficult to predict whether the total cost would increase or decrease as a result of the schedule compression. Recently third dimension in trade-off analysis is taken into consideration that is quality of the projects. Few of the existing algorithms are applied in a case of construction project with threedimensional trade-off analysis, Time-Cost-Quality relationships. The objective of this paper is to presents the development of a practical software system; that named Automatic Multi-objective Typical Construction Resource Optimization System "AMTCROS". This system incorporates the basic concepts of Line Of Balance "LOB" and Critical Path Method "CPM" in a multi-objective Genetic Algorithms "GAs" model. The main objective of this system is to provide a practical support for typical construction planners who need to optimize resource utilization in order to minimize project cost and duration while maximizing its quality simultaneously. The application of these research developments in planning the typical construction projects holds a strong promise to: 1) Increase the efficiency of resource use in typical construction projects; 2) Reduce construction duration period; 3) Minimize construction cost (direct cost plus indirect cost); and 4) Improve the quality of newly construction projects. A general description of the proposed software for the Time-Cost-Quality Trade-Off "TCQTO" is presented. The main inputs and outputs of the proposed software are outlined. The main subroutines and the inference engine of this software are detailed. The complexity analysis of the software is discussed. In addition, the verification, and complexity of the proposed software are proved and tested using a real case study.

Distribution Voltage Regulation Under Three- Phase Fault by Using D-STATCOM

This paper presents the voltage regulation scheme of D-STATCOM under three-phase faults. It consists of the voltage detection and voltage regulation schemes in the 0dq reference. The proposed control strategy uses the proportional controller in which the proportional gain, kp, is appropriately adjusted by using genetic algorithms. To verify its use, a simplified 4-bus test system is situated by assuming a three-phase fault at bus 4. As a result, the DSTATCOM can resume the load voltage to the desired level within 1.8 ms. This confirms that the proposed voltage regulation scheme performs well under three-phase fault events.

Performance of a Power Generator System Using Crude Plant Oil Blend with Diesel Fuel

Under the variation of crude oil price and the impact of greenhouse effect, it is urgent to find a potential alternative fuel. Among these alternative fuels, non edible plant oils are the most potential ones, because they don-t have the problem of food and cropland competitions. Among the non-edible plant oils, Jatropha oil is the most potential one. Jatropha oil is non-eatable oil and has good oil quality and low temperature performance. It has potential to become one of the most competitive biomass crude oils. The crude plant oil will be blended with diesel fuel to be tested in a power generator. The international collaboration between Taiwan and Indonesia on the production of Jatropha in Indonesia will also be presented in this study.

Applying Theory of Perceived Risk and Technology Acceptance Model in the Online Shopping Channel

As the advancement of technology, online shopping channel develops rapidly in recent years. According to the report of Taiwan Network Information Center, there are almost eighty percents of internet population shopping in online channel. Synthesizing insights from the previous research, this study develops the conceptual model to integrate Theory of Perceived Risk (TPR) and Technology Acceptance Model (TAM) to apply in online shopping. Using data collected from 637 respondents from online survey website, we use structural equation modeling to test measurement and structural models. The results suggest the need for consideration of perceived risk as an antecedent in the Technology Acceptance Model. The limitations and implications are discussed.

A Comparative Study of the Effectiveness of Trained Inspectors in Different Workloads between Feed Forward and Feedback Training

Objective of this study was to study and compare the effectiveness of inspectors who had different workloads for feed forward and feedback training. The visual search task was simulated to search for specified alphabets called defects. These defects were included of four alphabets in Thai and English such as s ภ, ถ, X, and V with different background. These defects were combined in the specified alphabets and were given the different three backgrounds i.e., Thai, English, and mixed English and Thai alphabets. Sixty students were chosen as a sample in this study and test for final selection subject. Finally, five subjects were taken into testing process. They were asked to search for defects after they were provided basic information. Experiment design was used factorial design and subjects were trained for feed forward and the feedback training. The results show that both trainings were affected on mean search time. It was also found that the feedback training can increase the effectiveness of visual inspectors rather than the feed forward training significantly different at the level of .05