Prioritization Method in the Fuzzy Analytic Network Process by Fuzzy Preferences Programming Method

In this paper, a method for deriving a group priority vector in the Fuzzy Analytic Network Process (FANP) is proposed. By introducing importance weights of multiple decision makers (DMs) based on their experiences, the Fuzzy Preferences Programming Method (FPP) is extended to a fuzzy group prioritization problem in the FANP. Additionally, fuzzy pair-wise comparison judgments are presented rather than exact numerical assessments in order to model the uncertainty and imprecision in the DMs- judgments and then transform the fuzzy group prioritization problem into a fuzzy non-linear programming optimization problem which maximize the group satisfaction. Unlike the known fuzzy prioritization techniques, the new method proposed in this paper can easily derive crisp weights from incomplete and inconsistency fuzzy set of comparison judgments and does not require additional aggregation producers. Detailed numerical examples are used to illustrate the implement of our approach and compare with the latest fuzzy prioritization method.

A Reconfigurable Processing Element for Cholesky Decomposition and Matrix Inversion

Fixed-point simulation results are used for the performance measure of inverting matrices by Cholesky decomposition. The fixed-point Cholesky decomposition algorithm is implemented using a fixed-point reconfigurable processing element. The reconfigurable processing element provides all mathematical operations required by Cholesky decomposition. The fixed-point word length analysis is based on simulations using different condition numbers and different matrix sizes. Simulation results show that 16 bits word length gives sufficient performance for small matrices with low condition number. Larger matrices and higher condition numbers require more dynamic range for a fixedpoint implementation.

Influence of Heat Transfer on Stability of Newtonian and Non-Newtonian Extending Films

The stability of Newtonian and Non-Newtonian extending films under local or global heating or cooling conditions are considered. The thickness-averaged mass, momentum and energy equations with convective and radiative heat transfer are derived, both for Newtonian and non-Newtonian fluids (Maxwell, PTT and Giesekus models considered). The stability of the system is explored using either eigenvalue analysis or transient simulations. The results showed that the influence of heating and cooling on stability strongly depends on the magnitude of the Peclet number. Examples of stabilization or destabilization of heating or cooling are shown for Pe

Analysis of Influenza Cases and Seasonal Index in Thailand

This study investigated the pattern and seasonal index of influenza cases in Thailand. Our results showed that southern Thailand had the highest influenza incidence among the four regions of Thailand (i.e. north, northeast, central and southern Thailand). The influenza pattern in southern Thailand was similar to that of northeastern Thailand. Seasonal index values of influenza cases in Thailand were higher in the hot season than in the wet season. Influenza cases started to increase at the beginning of the hot season (April), reached a maximum in August, rapidly declined in the middle of the wet season and reached the lowest value in December. Seasonal index values for northern Thailand differed from other regions of Thailand.

Investigation on the Feasibility of Composite Coil Spring for Automotive Applications

This paper demonstrates the feasibility of replacing the metal coil spring with the composite coil spring. Three different types of springs were made using glass fiber, carbon fiber and combination of glass fiber and carbon fiber. The objective of the study is to reduce the weight of the spring. According to the experimental results the spring rate of the carbon fiber spring is 34% more than the glass fiber spring and 45% more than the glass fiber/carbon fiber spring. The weight of the carbon fiber spring is 18% less than the glass fiber spring, 15% less than the Glass fiber/carbon fiber spring and 80% less than the steel spring.

Decomposition of Graphs into Induced Paths and Cycles

A decomposition of a graph G is a collection ψ of subgraphs H1,H2, . . . , Hr of G such that every edge of G belongs to exactly one Hi. If each Hi is either an induced path or an induced cycle in G, then ψ is called an induced path decomposition of G. The minimum cardinality of an induced path decomposition of G is called the induced path decomposition number of G and is denoted by πi(G). In this paper we initiate a study of this parameter.

Interspecific Variation in Heat Stress Tolerance and Oxidative Damage among 15 C3 Species

The C3 plants are frequently suffering from exposure to high temperature stress which limits the growth and yield of these plants. This study seeks to clarify the physiological mechanisms of heat tolerance in relation to oxidative stress in C3 species. Fifteen C3 species were exposed to prolonged moderately high temperature stress 36/30°C for 40 days in a growth chamber. Chlorophyll fluorescence (Fv/Fm) showed great difference among species at 40 days of the stress. The species showed decreases in Fv/Fm and increases in malondialdehyde (MDA) content under stress condition as well as negative correlation between Fv/Fm and MDA (r = -0.61*) at 40 days of the stress. Hydrogen peroxide (H2O2) content before and after stress in addition to its response under stress showed great differences among species. The results suggest that the difference in heat tolerance among C3 species is closely associated with the ability to suppress oxidative damage but not with the content of reactive oxygen species (ROS) which is regulated by complex network.

CFD Modeling of High Temperature Seal Chamber

The purpose of this work is fast design optimization of the seal chamber. The study includes the mass transfer between lower and upper chamber on seal chamber for hot water application pumps. The use of Fluent 12.1 commercial code made it possible to capture complex flow with heat-mass transfer, radiation, Tailor instability, and buoyancy effect. Realizable k-epsilon model was used for turbulence modeling. Radiation heat losses were taken into account. The temperature distribution at seal region is predicted with respect to heat addition. Results show the possibilities of the model simplifications by excluding the water domain in low chamber from calculations. CFD simulations permit to improve seal chamber design to meet target water temperature around the seal. This study can be used for the analysis of different seal chamber configurations.

Experimental Study of Submersible Jet on Flow Hydraulic Parameters

Behavior of turbulent jet is relying on jet parameters, environmental and geometric parameters. In this research, it has attempt to Study effect of jet parameters of internal angle on maximum effective length and velocity on centerline from nozzle experimentally. Toward this end, four internal angles 30, 45, 60 and 90-degree are considered for this study in a flume with 600cm as long, 100cm as high and 150cm in width. Various discharges were used to evaluate effective length for a wide range of densimetric Froude numbers F0, from 17.9 to 39.4 that is defined at the nozzle. As a result, It is revealed that both velocity on centerline and effective length decreases when nozzle angle decreased from 90° to 30°. The results show that, for all range of Fr0 the Um/U0 ratio for nozzle with α=90° on centerline increases 20% - 27% than nozzle with α=30° that has lowest velocity on centerline than other nozzle.

Sweetpotato Organic Cultivation with Wood Vinegar, Entomopathogenic Nematode and Fermented Organic Substance from Plants

The effect of wood vinegar, entomopathogenic nematodes ((Steinernema thailandensis n. sp.) and fermented organic substances from four plants such as: Derris elliptica Roxb, Stemona tuberosa Lour, Tinospora crispa Mier and Azadirachta indica J. were tested on the five varieties of sweetpotato with potential for bioethanol production ie. Taiwan, China, PROC No.65-16, Phichit 166-5, and Phichit 129-6. The experimental plots were located at Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok, Thailand. The aim of this study was to compare the efficiency of the five treatments for growth, yield and insect infestation on the five varieties of sweetpotato. Treatment with entomopathogenic nematodes gave the highest average weight of sweetpotato tubers (1.3 kg/tuber), followed by wood vinegar, fermented organic substances and mixed treatment with yields of 0.88, 0.46 and 0.43 kg/tuber, respectively. Also the entomopathogenic nematode treatment gave significantly higher average width and length of sweet potato (9.82 cm and 9.45 cm, respectively). Additionally, the entomopathogenic nematode provided the best control of insect infestation on sweetpotato leaves and tubers. Comparison among the varieties of sweetpotato, PROC NO.65-16 showed the highest weight and length. However, Phichit 129-6 gave significantly higher weight of 0.94 kg/tuber. Lastly, the lowest sweet potato weevil infestation on leaves and tubers occurred on Taiwan and Phichit 129-6.

A New Correlation for Overall Sherwood Number in Packed Liquid-Liquid Extraction Column

Using plug flow model in conjunction with experimental solute concentration profiles, overall volumetric mass transfer coefficient based on continuous phase (Koca), in a packed liquid-liquid extraction column has been optimized. Number of 12 experiments has been done using standard system of water/acid acetic/toluene in a 6 cm diameter, 120 cm height column. Thorough consideration of influencing parameters we intended to correlate dimensionless parameters in term of overall Sherwood number which has an acceptable average error of about 15.8%.

Chaotic Oscillations of Diaphragm Supported by Nonlinear Springs with Hysteresis

This paper describes vibration analysis using the finite element method for a small earphone, especially for the diaphragm shape with a low-rigidity. The viscoelastic diaphragm is supported by multiple nonlinear concentrated springs with linear hysteresis damping. The restoring forces of the nonlinear springs have cubic nonlinearity. The finite elements for the nonlinear springs with hysteresis are expressed and are connected to the diaphragm that is modeled by linear solid finite elements in consideration of a complex modulus of elasticity. Further, the discretized equations in physical coordinates are transformed into the nonlinear ordinary coupled equations using normal coordinates corresponding to the linear natural modes. We computed the nonlinear stationary and non-stationary responses due to the internal resonance between modes with large amplitude in the nonlinear springs and elastic modes in the diaphragm. The non-stationary motions are confirmed as the chaos due to the maximum Lyapunov exponents with a positive number. From the time histories of the deformation distribution in the chaotic vibration, we identified nonlinear modal couplings.

A Novel Dosimetry System for Computed Tomography using Phototransistor

Computed tomography (CT) dosimetry normally uses an ionization chamber 100 mm long to estimate the computed tomography dose index (CTDI), however some reports have already indicated that small devices could replace the long ion chamber to improve quality assurance procedures in CT dosimetry. This paper presents a novel dosimetry system based in a commercial phototransistor evaluated for CT dosimetry. Three detector configurations were developed for this system: with a single, two and four devices. Dose profile measurements were obtained with them and their angular response were evaluated. The results showed that the novel dosimetry system with the phototransistor could be an alternative for CT dosimetry. It allows to obtain the CT dose profile in details and also to estimate the CTDI in longer length than the 100 mm pencil chamber. The angular response showed that the one device detector configuration is the most adequate among the three configurations analyzed in this study.

FEA for Transient Responses of an S-Shaped Force Transducer with a Viscoelastic Absorber Using a Nonlinear Complex Spring

To compute dynamic characteristics of nonlinear viscoelastic springs with elastic structures having huge degree-of-freedom, Yamaguchi proposed a new fast numerical method using finite element method [1]-[2]. In this method, restoring forces of the springs are expressed using power series of their elongation. In the expression, nonlinear hysteresis damping is introduced. In this expression, nonlinear complex spring constants are introduced. Finite element for the nonlinear spring having complex coefficients is expressed and is connected to the elastic structures modeled by linear solid finite element. Further, to save computational time, the discrete equations in physical coordinate are transformed into the nonlinear ordinary coupled equations using normal coordinate corresponding to linear natural modes. In this report, the proposed method is applied to simulation for impact responses of a viscoelastic shock absorber with an elastic structure (an S-shaped structure) by colliding with a concentrated mass. The concentrated mass has initial velocities and collides with the shock absorber. Accelerations of the elastic structure and the concentrated mass are measured using Levitation Mass Method proposed by Fujii [3]. The calculated accelerations from the proposed FEM, corresponds to the experimental ones. Moreover, using this method, we also investigate dynamic errors of the S-shaped force transducer due to elastic mode in the S-shaped structure.

Self-Excited Vibration in Hydraulic Ball Check Valve

This paper describes an experimental, theoretical model and numerical study of concentrated vortex flow past a sphere in a hydraulic check valve. The phenomenon of the rotation of the ball around the axis of the device through which liquid flows has been found. That is, due to the rotation of the sphere in the check valve vibration is caused. We observe the rotation of the sphere around the longitudinal axis of the check valve. This rotation is induced by a vortex shedding from the sphere. We will discuss computational simulation and experimental investigations of this strong sphere rotation. The frequency of the sphere vibration and interaction with the check valve wall has been measured as a function of the wide range Reynolds Number. The validity of the computational simulation and of the assumptions on which it is based has been proved experimentally. This study demonstrates the possibility to control the vibrations in a hydraulic system and proves to be very effective suppression of the self-excited vibration.

Properties of Composite Nanofiber Produced by Single and Coaxial Nozzle Method used for Electrospinning Technique

In this study, single nozzle method used for electrospinning technique which composite polymer solution with cellulose nanowiskers (CNW) was treated by ultrasonic sonificator have been compared with coaxial (double) nozzle method, in terms of mechanical, thermal and morphological properties of composite nanofiber. The effect of water content in composite polymer solution on properties of nanofiber has also been examined. It has been seen that single nozzle method which polymer solution does not contain water has better results than that of coaxial method, in terms of mechanical, thermal and morphological properties of nanofiber. However, it is necessary to make an optimization study on setting condition of ultrasonic treatment to get better dispersion of CNW in composite nanofiber and to get better mechanical and thermal properties

Nanobiocomposites with Enhanced Cell Proliferation and Improved Mechanical Properties Based on Organomodified-Nanoclay and Silicone Rubber

Bionanotechnology deals with nanoscopic interactions between nanostructured materials and biological systems. Polymer nanocomposites with optimized biological activity have attracted great attention. Nanoclay is considered as reinforcing nanofiller in manufacturing of high performance nanocomposites. In current study, organomodified-nanoclay with negatively charged silicate layers was incorporated into biomedical grade silicone rubber. Nanoparticle loading has been tailored to enhance cell behavior. Addition of nanoparticles led to improved mechanical properties of substrate with enhanced strength and stiffness while no toxic effects was observed. Results indicated improved viability and proliferation of cells by addition of nanofillers. The improved mechanical properties of the matrix result in proper cell response through adjustment and arrangement of cytoskeletal fibers. Results can be applied in tissue engineering when enhanced substrates are required for improvement of cell behavior for in vivo applications.

Study on Cross-flow Heat Transfer in Fixed Bed

Radial flow reactor was focused for large scale methanol synthesis and in which the heat transfer type was cross-flow. The effects of operating conditions including the reactor inlet air temperature, the heating pipe temperature and the air flow rate on the cross-flow heat transfer was investigated and the results showed that the temperature profile of the area in front of the heating pipe was slightly affected by all the operating conditions. The main area whose temperature profile was influenced was the area behind the heating pipe. The heat transfer direction according to the air flow directions. In order to provide the basis for radial flow reactor design calculation, the dimensionless number group method was used for data fitting of the bed effective thermal conductivity and the wall heat transfer coefficient which was calculated by the mathematical model with the product of Reynolds number and Prandtl number. The comparison of experimental data and calculated value showed that the calculated value fit the experimental data very well and the formulas could be used for reactor designing calculation.

Comparison of Ageing Deterioration of Silicone Rubber Housing Material for Outdoor Polymer Insulators

This paper presents the comparison ageing deterioration of silicone rubber housing material for outdoor polymer insulators by using salt fog ageing test based on IEC 61109 and outdoor exposure test.Four types of high temperature silicone vulcanized silicone rubber sheet with different amount of ATH were used as testing specimen. For salt fog ageing test, the specimens were tested continuously 1000 hours with energized in test chamber. For outdoor exposure test, the specimens were hung continuously 18 months without energized. Physical and chemical analyses were conducted to evaluate degree of ageing deterioration of tested specimens. Slightly surface erosion was observed on specimen surface after salt fog ageing test and no erosion was observed on surface of outdoor exposure specimen. However, comparable degree of ageing deterioration can be seen from surface analysis results.

Performance of Random Diagonal Codes for Spectral Amplitude Coding Optical CDMA Systems

In this paper we study the use of a new code called Random Diagonal (RD) code for Spectral Amplitude Coding (SAC) optical Code Division Multiple Access (CDMA) networks, using Fiber Bragg-Grating (FBG), FBG consists of a fiber segment whose index of reflection varies periodically along its length. RD code is constructed using code level and data level, one of the important properties of this code is that the cross correlation at data level is always zero, which means that Phase intensity Induced Phase (PIIN) is reduced. We find that the performance of the RD code will be better than Modified Frequency Hopping (MFH) and Hadamard code It has been observed through experimental and theoretical simulation that BER for RD code perform significantly better than other codes. Proof –of-principle simulations of encoding with 3 channels, and 10 Gbps data transmission have been successfully demonstrated together with FBG decoding scheme for canceling the code level from SAC-signal.