Cell Phone: A Vital Clue

Increasing use of cell phone as a medium of human interaction is playing a vital role in solving riddles of crime as well. A young girl went missing from her home late in the evening in the month of August, 2008 when her enraged relatives and villagers physically assaulted and chased her fiancée who often frequented her home. Two years later, her mother lodged a complaint against the relatives and the villagers alleging that after abduction her daughter was either sold or killed as she had failed to trace her. On investigation, a rusted cell phone with partial visible IMEI number, clothes, bangles, human skeleton etc. recovered from abandoned well in the month of May, 2011 were examined in the lab. All hopes pinned on identity of cell phone, for only linking evidence to fix the scene of occurrence supported by call detail record (CDR) and to dispel doubts about mode of sudden disappearance or death as DNA technology did not help in establishing identity of the deceased. The conventional scientific methods were used without success and international mobile equipment identification number of the cell phone could be generated by using statistical analysis followed by online verification. 

Influences of Thermal Relaxation Times on Generalized Thermoelastic Longitudinal Waves in Circular Cylinder

This paper is concerned with propagation of thermoelastic longitudinal vibrations of an infinite circular cylinder, in the context of the linear theory of generalized thermoelasticity with two relaxation time parameters (Green and Lindsay theory). Three displacement potential functions are introduced to uncouple the equations of motion. The frequency equation, by using the traction free boundary conditions, is given in the form of a determinant involving Bessel functions. The roots of the frequency equation give the value of the characteristic circular frequency as function of the wave number. These roots, which correspond to various modes, are numerically computed and presented graphically for different values of the thermal relaxation times. It is found that the influences of the thermal relaxation times on the amplitudes of the elastic and thermal waves are remarkable. Also, it is shown in this study that the propagation of thermoelastic longitudinal vibrations based on the generalized thermoelasticity can differ significantly compared with the results under the classical formulation. A comparison of the results for the case with no thermal effects shows well agreement with some of the corresponding earlier results.

Molecular Characterization of Free Radicals Decomposing Genes on Plant Developmental Stages

Biochemical and molecular analysis of some antioxidant enzyme genes revealed different level of gene expression on oilseed (Brassica napus). For molecular and biochemical analysis, leaf tissues were harvested from plants at eight different developmental stages, from young to senescence. The levels of total protein and chlorophyll were increased during maturity stages of plant, while these were decreased during the last stages of plant growth. Structural analysis (nucleotide and deduced amino acid sequence, and phylogenic tree) of a complementary DNA revealed a high level of similarity for a family of Catalase genes. The expression of the gene encoded by different Catalase isoforms was assessed during different plant growth phase. No significant difference between samples was observed, when Catalase activity was statistically analyzed at different developmental stages. EST analysis exhibited different transcripts levels for a number of other relevant antioxidant genes (different isoforms of SOD and glutathione). The high level of transcription of these genes at senescence stages was indicated that these genes are senescenceinduced genes.

Strength Characteristics of Shallow Gassy Sand in the Hangzhou Bay

In view of geological origin, formation of the shallow gas reservoir of the Hangzhou Bay, northern Zhejiang Province, eastern China, and original occurrence characteristics of the gassy sand are analyzed. Generally, gassy sand in scale gas reservoirs is in the state of residual moisture content and the approximate scope of initial matric suction of sand ranges about from 0kPa to100kPa. Results based on GDS triaxial tests show that the classical shear strength formulas of unsaturated soil can not effectively describe basic strength characteristics of gassy sand; the relationship between apparent cohesion and matric suction of gassy sand agrees well with the power function, which can reasonably be used to describe the strength of gassy sand. In the stress path of gas release, shear strength of gassy sand will increase and experimental results show the formula proposed in this paper can effectively predict the strength increment. When saturated strength indexes of the sand are used in engineering design, moderate reduction should be considered.

An Approach of Control System for Automated Storage and Retrieval System (AS/RS)

Automated storage and retrieval systems (AS/RS) become frequently used systems in warehouses. There has been a transition from human based forklift applications to fast and safe AS/RS applications in firm-s warehouse systems. In this study, basic components and automation systems of the AS/RS are examined. Proposed system's automation components and their tasks in the system control algorithm were stated. According to this control algorithm the control system structure was obtained.

Underlying Cognitive Complexity Measure Computation with Combinatorial Rules

Measuring the complexity of software has been an insoluble problem in software engineering. Complexity measures can be used to predict critical information about testability, reliability, and maintainability of software systems from automatic analysis of the source code. During the past few years, many complexity measures have been invented based on the emerging Cognitive Informatics discipline. These software complexity measures, including cognitive functional size, lend themselves to the approach of the total cognitive weights of basic control structures such as loops and branches. This paper shows that the current existing calculation method can generate different results that are algebraically equivalence. However, analysis of the combinatorial meanings of this calculation method shows significant flaw of the measure, which also explains why it does not satisfy Weyuker's properties. Based on the findings, improvement directions, such as measures fusion, and cumulative variable counting scheme are suggested to enhance the effectiveness of cognitive complexity measures.

Sensory, Microbiological and Chemical Assessment of Cod (Gadus morhua) Fillets during Chilled Storage as Influenced by Bleeding Methods

The effects of seawater and slurry ice bleeding methods on the sensory, microbiological and chemical quality changes of cod fillets during chilled storage were examined in this study. The results from sensory evaluation showed that slurry ice bleeding method prolonged the shelf life of cod fillets up to 13-14 days compared to 10-11 days for fish bled in seawater. Slurry ice bleeding method also led to a slower microbial growth and biochemical developments, resulting lower total plate count (TPC), H2S-producing bacteria count, total volatile basic nitrogen (TVB-N), trimethylamine (TMA), free fatty acid (FFA) content and higher phospholipid content (PL) compared to those of samples bled in seawater. The results of principle component analysis revealed that TPC, H2S-producing bacteria, TVB-N, TMA and FFA were in significant correlation. They were also in negative correlation with sensory evaluation (Torry score), PL and water holding capacity (WHC).

Drivers of Customer Satisfaction in an Industrial Company from Marketing Aspect

One of the basic concepts in marketing is the concept of meeting customers- needs. Since customer satisfaction is essential for lasting survival and development of a business, screening and observing customer satisfaction and recognizing its underlying factors must be one of the key activities of every business. The purpose of this study is to recognize the drivers that effect customer satisfaction in a business-to-business situation in order to improve marketing activities. We conducted a survey in which 93 business customers of a manufacturer of Diesel Generator in Iran participated and they talked about their ideas and satisfaction of supplier-s services related to its products. We developed the measures for drivers of satisfaction first by as investigative research (by means of feedback from executives and customers of sponsoring firm). Then based on these measures, we created a mail survey, and asked the respondents to explain their opinion about the sponsoring firm which was a supplier of diesel generator and similar products. Furthermore, the survey required the participants to mention their functional areas and their company features. In Conclusion we found that there are three drivers for customer satisfaction, which are reliability, information about product, and commercial features. Buyers/users from different functional areas attribute different degree of importance to the last two drivers. For instance, people from buying and management areas believe that commercial features are more important than information about products. But people in engineering, maintenance and production areas believe that having information about products is more important than commercial aspects. Marketing experts should consider the attribute of customers regarding information about the product and commercial features to improve market share.

Selecting Negative Examples for Protein-Protein Interaction

Proteomics is one of the largest areas of research for bioinformatics and medical science. An ambitious goal of proteomics is to elucidate the structure, interactions and functions of all proteins within cells and organisms. Predicting Protein-Protein Interaction (PPI) is one of the crucial and decisive problems in current research. Genomic data offer a great opportunity and at the same time a lot of challenges for the identification of these interactions. Many methods have already been proposed in this regard. In case of in-silico identification, most of the methods require both positive and negative examples of protein interaction and the perfection of these examples are very much crucial for the final prediction accuracy. Positive examples are relatively easy to obtain from well known databases. But the generation of negative examples is not a trivial task. Current PPI identification methods generate negative examples based on some assumptions, which are likely to affect their prediction accuracy. Hence, if more reliable negative examples are used, the PPI prediction methods may achieve even more accuracy. Focusing on this issue, a graph based negative example generation method is proposed, which is simple and more accurate than the existing approaches. An interaction graph of the protein sequences is created. The basic assumption is that the longer the shortest path between two protein-sequences in the interaction graph, the less is the possibility of their interaction. A well established PPI detection algorithm is employed with our negative examples and in most cases it increases the accuracy more than 10% in comparison with the negative pair selection method in that paper.

Sliding Mode Control Based on Backstepping Approach for an UAV Type-Quadrotor

In this paper; we are interested principally in dynamic modelling of quadrotor while taking into account the high-order nonholonomic constraints in order to develop a new control scheme as well as the various physical phenomena, which can influence the dynamics of a flying structure. These permit us to introduce a new state-space representation. After, the use of Backstepping approach for the synthesis of tracking errors and Lyapunov functions, a sliding mode controller is developed in order to ensure Lyapunov stability, the handling of all system nonlinearities and desired tracking trajectories. Finally simulation results are also provided in order to illustrate the performances of the proposed controller.

Modular Hybrid Robots for Safe Human-Robot Interaction

The paper considers a novel modular and intrinsically safe redundant robotic system with biologically inspired actuators (pneumatic artificial muscles and rubber bellows actuators). Similarly to the biological systems, the stiffness of the internal parallel modules, representing 2 DOF joints in the serial robotic chains, is controlled by co-activation of opposing redundant actuator groups in the null-space of the module Jacobian, without influencing the actual robot position. The decoupled position/stiffness control allows the realization of variable joint stiffness according to different force-displacement relationships. The variable joint stiffness, as well as limited pneumatic muscle/bellows force ability, ensures internal system safety that is crucial for development of human-friendly robots intended for human-robot collaboration. The initial experiments with the system prototype demonstrate the capabilities of independently, simultaneously controlling both joint (Cartesian) motion and joint stiffness. The paper also presents the possible industrial applications of snake-like robots built using the new modules.

Research of Linear Camera Calibration Based on Planar Pattern

An important step in three-dimensional reconstruction and computer vision is camera calibration, whose objective is to estimate the intrinsic and extrinsic parameters of each camera. In this paper, two linear methods based on the different planes are given. In both methods, the general plane is used to replace the calibration object with very good precision. In the first method, after controlling the camera to undergo five times- translation movements and taking pictures of the orthogonal planes, a set of linear constraints of the camera intrinsic parameters is then derived by means of homography matrix. The second method is to get all camera parameters by taking only one picture of a given radius circle. experiments on simulated data and real images,indicate that our method is reasonable and is a good supplement to camera calibration.

Debye Layer Confinement of Nucleons in Nuclei by Laser Ablated Plasma

Following the laser ablation studies leading to a theory of nuclei confinement by a Debye layer mechanism, we present here numerical evaluations for the known stable nuclei where the Coulomb repulsion is included as a rather minor component especially for lager nuclei. In this research paper the required physical conditions for the formation and stability of nuclei particularly endothermic nuclei with mass number greater than to which is an open astrophysical question have been investigated. Using the Debye layer mechanism, nuclear surface energy, Fermi energy and coulomb repulsion energy it is possible to find conditions under which the process of nucleation is permitted in early universe. Our numerical calculations indicate that about 200 second after the big bang at temperature of about 100 KeV and subrelativistic region with nucleon density nearly equal to normal nuclear density namely, 10cm all endothermic and exothermic nuclei have been formed.

Improvement of New Government R&D Program Plans through Preliminary Feasibility Studies

As a part of an evaluation system for R&D programs, the Korean Government has applied the preliminary feasibility study to new government R&D program plans. Basically, the fundamental purpose of the preliminary feasibility study is to decide that the government will either do or do not invest in a new R&D Program. Additionally, the preliminary feasibility study can contribute to the improvement of R&D program plans. For example, 2 cases of new R&D program plans applied to the study are explained in this paper and there are expectations that these R&D programs would yield better performance than without the study. It is thought that the important point of the preliminary feasibility study is not only the effective decision making process of R&D program but also the opportunity to improve R&D program plan actually.

Effect of Adding Sawdust on Mechanical- Physical Properties of Ceramic Bricks to Obtain Lightweight Building Material

This paper studies the application of a variety of sawdust materials in the production of lightweight insulating bricks. First, the mineralogical and chemical composition of clays was determined. Next, ceramic bricks were fabricated with different quantities of materials (3–6 and 9 wt. % for sawdust, 65 wt. % for grey clay, 24–27 and 30 wt. % for yellow clay and 2 wt% of tuff). These bricks were fired at 800 and 950 °C. The effect of adding this sawdust on the technological behaviour of the brick was assessed by drying and firing shrinkage, water absorption, porosity, bulk density and compressive strength. The results have shown that the optimum sintering temperature is 950 °C. Below this temperature, at 950 °C, increased open porosity was observed, which decreased the compressive strength of the bricks. Based on the results obtained, the optimum amounts of waste were 9 wt. % sawdust of eucalyptus, 24 wt. % shaping moisture and 1.6 particle size diameter. These percentages produced bricks whose mechanical properties were suitable for use as secondary raw materials in ceramic brick production.

Grid Independence Study of Flow Past a Square Cylinder Using the Multi-Relaxation-Time Lattice Boltzmann Method

Numerical calculations of flow around a square cylinder are presented using the multi-relaxation-time lattice Boltzmann method at Reynolds number 150. The effects of upstream locations, downstream locations and blockage are investigated systematically. A detail analysis are given in terms of time-trace analysis of drag and lift coefficients, power spectra analysis of lift coefficient, vorticity contours visualizations and phase diagrams. A number of physical quantities mean drag coefficient, drag coefficient, Strouhal number and root-mean-square values of drag and lift coefficients are calculated and compared with the well resolved experimental data and numerical results available in open literature. The results had shown that the upstream, downstream and height of the computational domain are at least 7.5, 37.5 and 12 diameters of the cylinder, respectively.

Multi-Hazard Risk Assessment and Management in Tourism Industry- A Case Study from the Island of Taiwan

Global environmental changes lead to increased frequency and scale of natural disaster, Taiwan is under the influence of global warming and extreme weather. Therefore, the vulnerability was increased and variability and complexity of disasters is relatively enhanced. The purpose of this study is to consider the source and magnitude of hazard characteristics on the tourism industry. Using modern risk management concepts, integration of related domestic and international basic research, this goes beyond the Taiwan typhoon disaster risk assessment model and evaluation of loss. This loss evaluation index system considers the impact of extreme weather, in particular heavy rain on the tourism industry in Taiwan. Consider the extreme climate of the compound impact of disaster for the tourism industry; we try to make multi-hazard risk assessment model, strategies and suggestions. Related risk analysis results are expected to provide government department, the tourism industry asset owners, insurance companies and banking include tourist disaster risk necessary information to help its tourism industry for effective natural disaster risk management.

Antioxidant and Aِntimicrobial Properties of Peptides as Bioactive Components in Beef Burger

Dried soy protein hydrolysate powder was added to the burger in order to enhance the oxidative stability as well as decreases the microbial spoilage. The soybean bioactive compounds (soy protein hydrolysate) as antioxidant and antimicrobial were added at level of 1, 2 and 3 %.Chemical analysis and physical properties were affected by protein hydrolysate addition. The TBA values were significantly affected (P < 0.05) by the storage period and the level of soy protein hydrolysate. All the tested soybean protein hydrolysate additives showed strong antioxidant properties. Samples of soybean protein hydrolysate showed the lowest (P < 0.05) TBA values at each time of storage. The counts of all determined microbiological indicators were significantly (P < 0.05) affected by the addition of the soybean protein hydrolysate. Decreasing trends of different extent were also observed in samples of the treatments for total viable counts, Coliform, Staphylococcus aureus, yeast and molds. Storage period was being significantly (P < 0.05) affected on microbial counts in all samples Staphylococcus aureus were the most sensitive microbe followed by Coliform group of the sample containing protein hydrolysate, while molds and yeast count showed a decreasing trend but not significant (P < 0.05) until the end of the storage period compared with control sample. Sensory attributes were also performed, added protein hydrolysate exhibits beany flavor which was clear about samples of 3% protein hydrolysate.

Project Management Success for Contractors

The aim of this paper is to provide a better understanding of the implementation of Project Management practices by UiTM contractors to ensure project success. A questionnaire survey was administered to 120 UiTM contractors in Malaysia. The purpose of this method was to gather information on the contractors- project background and project management skills. It was found that all of the contractors had basic knowledge and understanding of project management skills. It is suggested that a reasonable project plan and an appropriate organizational structure are influential factors for project success. It is recommended that the contractors need to have an effective program of work and up to date information system are emphasized.

Mechanisms Involved In Organic Solvent Resistance in Gram-Negative Bacteria

The high world interest given to the researches concerning the study of moderately halophilic solvent-tolerant bacteria isolated from marine polluted environments is due to their high biotechnological potential, and also to the perspective of their application in different remediation technologies. Using enrichment procedures, I isolated two moderately halophilic Gram-negative bacterial strains from seawater sample, which are tolerant to organic solvents. Cell tolerance, adhesion and cells viability of Aeromonas salmonicida IBBCt2 and Pseudomonas aeruginosa IBBCt3 in the presence of organic solvents depends not only on its physicochemical properties and its concentration, but also on the specific response of the cells, and the cellular response is not the same for these bacterial strains. n-hexane, n-heptane, propylbenzene, with log POW between 3.69 and 4.39, were less toxic for Aeromonas salmonicida IBBCt2 and Pseudomonas aeruginosa IBBCt3, compared with toluene, styrene, xylene isomers and ethylbenzene, with log POW between 2.64 and 3.17. The results indicated that Aeromonas salmonicida IBBCt2 is more susceptible to organic solvents than Pseudomonas aeruginosa IBBCt3. The mechanisms underlying solvent tolerance (e.g., the existance of the efflux pumps) in Aeromonas salmonicida IBBCt2 and Pseudomonas aeruginosa IBBCt3 it was also studied.