Electrical Characteristics of Biomodified Electrodes using Nonfaradaic Electrochemical Impedance Spectroscopy

We demonstrate a nonfaradaic electrochemical impedance spectroscopy measurement of biochemically modified gold plated electrodes using a two-electrode system. The absence of any redox indicator in the impedance measurements provide more precise and accurate characterization of the measured bioanalyte at molecular resolution. An equivalent electrical circuit of the electrodeelectrolyte interface was deduced from the observed impedance data of saline solution at low and high concentrations. The detection of biomolecular interactions was fundamentally correlated to electrical double-layer variation at modified interface. The investigations were done using 20mer deoxyribonucleic acid (DNA) strands without any label. Surface modification was performed by creating mixed monolayer of the thiol-modified single-stranded DNA and a spacer thiol (mercaptohexanol) by a two-step self-assembly method. The results clearly distinguish between the noncomplementary and complementary hybridization of DNA, at low frequency region below several hundreds Hertz.

Overall Effect of Nano Clay on the Physical Mechanical Properties of Epoxy Resin

In this paper, the effect of modified clay on the mechanical efficiency of epoxy resin is examined. Studies by X ray diffraction and microscopic transient electron method show that modified clay distribution in polymer area is intercalated kind. Examination the results of mechanical tests shows that existence of modified clay in epoxy area increases pressure yield strength, tension module and nano composite fracture toughness in relate of pure epoxy. By microscopic examinations it is recognized too that the action of toughness growth of this kind of nano composite is due to crack deflection, formation of new surfaces and fracture of clay piles.

Bifurcation Method for Solving Positive Solutions to a Class of Semilinear Elliptic Equations and Stability Analysis of Solutions

Semilinear elliptic equations are ubiquitous in natural sciences. They give rise to a variety of important phenomena in quantum mechanics, nonlinear optics, astrophysics, etc because they have rich multiple solutions. But the nontrivial solutions of semilinear equations are hard to be solved for the lack of stabilities, such as Lane-Emden equation, Henon equation and Chandrasekhar equation. In this paper, bifurcation method is applied to solving semilinear elliptic equations which are with homogeneous Dirichlet boundary conditions in 2D. Using this method, nontrivial numerical solutions will be computed and visualized in many different domains (such as square, disk, annulus, dumbbell, etc).

Bridging the Mental Gap between Convolution Approach and Compartmental Modeling in Functional Imaging: Typical Embedding of an Open Two-Compartment Model into the Systems Theory Approach of Indicator Dilution Theory

Functional imaging procedures for the non-invasive assessment of tissue microcirculation are highly requested, but require a mathematical approach describing the trans- and intercapillary passage of tracer particles. Up to now, two theoretical, for the moment different concepts have been established for tracer kinetic modeling of contrast agent transport in tissues: pharmacokinetic compartment models, which are usually written as coupled differential equations, and the indicator dilution theory, which can be generalized in accordance with the theory of lineartime- invariant (LTI) systems by using a convolution approach. Based on mathematical considerations, it can be shown that also in the case of an open two-compartment model well-known from functional imaging, the concentration-time course in tissue is given by a convolution, which allows a separation of the arterial input function from a system function being the impulse response function, summarizing the available information on tissue microcirculation. Due to this reason, it is possible to integrate the open two-compartment model into the system-theoretic concept of indicator dilution theory (IDT) and thus results known from IDT remain valid for the compartment approach. According to the long number of applications of compartmental analysis, even for a more general context similar solutions of the so-called forward problem can already be found in the extensively available appropriate literature of the seventies and early eighties. Nevertheless, to this day, within the field of biomedical imaging – not from the mathematical point of view – there seems to be a trench between both approaches, which the author would like to get over by exemplary analysis of the well-known model.

Effect of Dietary Supplementation of Different Levels of Black Seed (Nigella Sativa L.) on Growth Performance, Immunological, Hematological and Carcass Parameters of Broiler Chicks

This experiment was conducted to investigate the effect of dietary supplementation of different levels of black seed (Nigella sativa L.) on the performance and immune response of broiler chicks. A total 240 day-old broiler chicks were used and randomly allotted equally into six experimental groups designated as 1, 2, 3, 4, 5 and 6 having black seed at the rate of 0, 2, 4, 6, 8 and 10 g /kg diet respectively. The study was lasted for 42 days. Average body weight, weight gain, relative growth rate, feed conversion, antibody titer against Newcastle disease, phagocytic activity and phagocytic index, some blood parameters(GOT, GPT, Glucose, Cholesterol, Triglyceride, Total protein, Albumen, WBCs, RBCs, Hb and PCV), dressing percentage, weight of different body organs, abdominal fat weight, were determined. It was found that, N. Sativa significantly improved final body weight, total body gain and feed conversion ratio of groups 2 and 3 when compared with the control group. Higher levels of N. Sativa did not improve growth performance of the chicks. Non significant differences were observed for antibody titer against Newcastle virus, WBCs count, serum GOT, glucose level, dressing %, relative liver, spleen, heart and head percentages. Lymphoid organs (Bursa and Thymus) improved significantly with increasing N. Sativa level in all supplemented groups. Serum cholesterol, triglyceride and visible fat % significantly decreased with Nigella sativa supplementation while serum GPT level significantly increased with nigella sativa supplementation.

Correspondence between Function and Interaction in Protein Interaction Network of Saccaromyces cerevisiae

Understanding the cell's large-scale organization is an interesting task in computational biology. Thus, protein-protein interactions can reveal important organization and function of the cell. Here, we investigated the correspondence between protein interactions and function for the yeast. We obtained the correlations among the set of proteins. Then these correlations are clustered using both the hierarchical and biclustering methods. The detailed analyses of proteins in each cluster were carried out by making use of their functional annotations. As a result, we found that some functional classes appear together in almost all biclusters. On the other hand, in hierarchical clustering, the dominancy of one functional class is observed. In the light of the clustering data, we have verified some interactions which were not identified as core interactions in DIP and also, we have characterized some functionally unknown proteins according to the interaction data and functional correlation. In brief, from interaction data to function, some correlated results are noticed about the relationship between interaction and function which might give clues about the organization of the proteins, also to predict new interactions and to characterize functions of unknown proteins.

Study of Optical Properties of a Glutathione Capped Gold Nanoparticles Using Linker (MHDA) by Fourier Transform Infra Red Spectroscopy and Surface Enhanced Raman Scattering

16-Mercaptohexadecanoic acid (MHDA) and tripeptide glutathione conjugated with gold nanoparticles (Au-NPs) are characterized by Fourier Transform InfaRared (FTIR) spectroscopy combined with Surface-enhanced Raman scattering (SERS) spectroscopy. Surface Plasmon Resonance (SPR) technique based on FTIR spectroscopy has become an important tool in biophysics, which is perspective for the study of organic compounds. FTIR-spectra of MHDA shows the line at 2500 cm-1 attributed to thiol group which is modified by presence of Au-NPs, suggesting the formation of bond between thiol group and gold. We also can observe the peaks originate from characteristic chemical group. A Raman spectrum of the same sample is also promising. Our preliminary experiments confirm that SERS-effect takes place for MHDA connected with Au-NPs and enable us to detected small number (less than 106 cm-2) of MHDA molecules. Combination of spectroscopy methods: FTIR and SERS – enable to study optical properties of Au- NPs and immobilized bio-molecules in context of a bio-nano-sensors.

Laboratory Scale Extraction of Sugar Cane using High Electric Field Pulses

The aim of this study was to extract sugar from sugarcane using high electric field pulse (HELP) as a non-thermal cell permeabilization method. The result of this study showed that it is possible to permeablize sugar cane cells using HELP at very short times (less than 10 sec.) and at room temperature. Increasing the field strength (from 0.5kV/cm to 2kV/cm) and pulse number (1 to 12) led to increasing the permeabilization of sugar cane cells. The energy consumption during HELP treatment of sugar cane (2.4 kJ/kg) was about 100 times less compared to thermal cell disintegration at 85

Preparation Influences of Breed, sex and Sodium Butyrate Supplementation on the Performance, Carcass Traits and Mortality of Fattening Rabbits

Twenty four New Zealand white rabbits (12 does and 12 bucks) and twenty four Flanders (12 does and 12 bucks) rabbits, allotted into two feeding regime (6 for each breed, 3 males and 3 females) first one fed commercial ration and second one fed commercial diet plus sodium butyrate (300 g/ton). The obtained results showed that at end of 8th week experimental period New Zealand white rabbits were heavier body weight than Flanders rabbits (1934.55+39.05 vs. 1802.5+30.99 g); significantly high body weight gain during experimental period especially during 8th week (136.1+3.5 vs. 126.8+1.8 g/week); better feed conversion ratio during all weeks of experiment from first week (3.07+0.16 vs. 3.12+0.10) till the 8th week of experiment (5.54+0.16 vs. 5.76+0.07) with significantly high dressing percentages (0.54+0.01 vs. 0.52+0.01). Also all carcass cuts were significantly high in New Zealand white rabbits than Flanders. Females rabbits (at the same age) were lower body weight than males from start of experiment (941.1+39.8 vs.972.1+33.5 g) till the end of experiment (1833.64+37.69 vs. 1903.41+36.93 g); gained less during all weeks of experiment except during 8th week (132.1+2.3 vs. 130.9+3.4 g/week), with lower dressing percentage (0.52+0.01 vs. 0.53+0.01) and lighter carcass cuts than males, however, they had better feed conversion ratio during 1st week, 7th week and 8th week of experiment. Addition of 300g sodium butyrate/ton of rabbit increased the body weight of rabbits at the end of experimental period (1882.71+26.45 vs. 1851.5+49.82 g); improve body weight gain at 3rd, 4th, 5th, 6th and 7th week of experiment and significantly improve feed conversion ratio during all weeks of the experiment from 1st week (2.85+0.07 vs. 3.30+0.15) till the 8th week of the experiment (5.51+0.12 vs. 5.77+0.12). Also the dressing percentage was higher in Sodium butyrate fed groups than control one (0.53+0.01 vs. 0.52+0.01) and the most important results of feeding sodium butyrate is the reducing of the mortality percentage in rabbits during 8 week experiment to zero percentage as compared with 16% in control group.

Tomato Fruit Quality of Different Cultivars Growth in Lithuania

Two cultivars ('Rutuliai', 'Saint Perrie') and five hybrids ('Tolstoi', 'Brooklyn', 'Tocayo', 'Benito', 'Tourist') of edible tomato (Lycopersicon esculentum Mill.) were investigated at the LRCAF Institute of Horticulture. The following fruit quality parameters were evaluated: the amount of lycopene, β-carotene, ascorbic acid, total and inverted sugar, sucrose, dry matter soluble solids in fresh tomato matter, also were determined fruit skin and flesh firmness, color indexes (CIE L*a*b*) and calculated hue angle (h°) with chroma (C).

Simultaneous Saccharification and Fermentation(SSF) of Sugarcane Bagasse - Kinetics and Modeling

Simultaneous Saccharification and Fermentation (SSF) of sugarcane bagasse by cellulase and Pachysolen tannophilus MTCC *1077 were investigated in the present study. Important process variables for ethanol production form pretreated bagasse were optimized using Response Surface Methodology (RSM) based on central composite design (CCD) experiments. A 23 five level CCD experiments with central and axial points was used to develop a statistical model for the optimization of process variables such as incubation temperature (25–45°) X1, pH (5.0–7.0) X2 and fermentation time (24–120 h) X3. Data obtained from RSM on ethanol production were subjected to the analysis of variance (ANOVA) and analyzed using a second order polynomial equation and contour plots were used to study the interactions among three relevant variables of the fermentation process. The fermentation experiments were carried out using an online monitored modular fermenter 2L capacity. The processing parameters setup for reaching a maximum response for ethanol production was obtained when applying the optimum values for temperature (32°C), pH (5.6) and fermentation time (110 h). Maximum ethanol concentration (3.36 g/l) was obtained from 50 g/l pretreated sugarcane bagasse at the optimized process conditions in aerobic batch fermentation. Kinetic models such as Monod, Modified Logistic model, Modified Logistic incorporated Leudeking – Piret model and Modified Logistic incorporated Modified Leudeking – Piret model have been evaluated and the constants were predicted.

Hopf Bifurcation for a New Chaotic System

In this paper, a three dimensional autonomous chaotic system is considered. The existence of Hopf bifurcation is investigated by choosing the appropriate bifurcation parameter. Furthermore, formulas for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions are derived with the help of normal form theory. Finally, a numerical example is given.

Ten Limit Cycles in a Quintic Lyapunov System

In this paper, center conditions and bifurcation of limit cycles at the nilpotent critical point in a class of quintic polynomial differential system are investigated.With the help of computer algebra system MATHEMATICA, the first 10 quasi Lyapunov constants are deduced. As a result, sufficient and necessary conditions in order to have a center are obtained. The fact that there exist 10 small amplitude limit cycles created from the three order nilpotent critical point is also proved. Henceforth we give a lower bound of cyclicity of three-order nilpotent critical point for quintic Lyapunov systems. At last, we give an system which could bifurcate 10 limit circles.

Onset Velocity Profiles Evolution in Microchannels

The present microfluidic study is emphasizing the flow behavior within a Y shape micro-bifurcation in two similar flow configurations. We report here a numerical and experimental investigation on the velocity profiles evolution and secondary flows, manifested at different Reynolds numbers (Re) and for two different boundary conditions. The experiments are performed using special designed setup based on optical microscopic devices. With this setup, direct visualizations and quantitative measurements of the path-lines are obtained. A Micro-PIV measurement system is used to obtain velocity profiles distributions in a spatial evolution in the main flows domains. The experimental data is compared with numerical simulations performed with commercial computational code FLUENT in a 3D geometry with the same dimensions as the experimental one. The numerical flow patterns are found to be in good agreement with the experimental manifestations.

Optimization of Protein Hydrolysate Production Process from Jatropha curcas Cake

This was the first document revealing the investigation of protein hydrolysate production optimization from J. curcas cake. Proximate analysis of raw material showed 18.98% protein, 5.31% ash, 8.52% moisture and 12.18% lipid. The appropriate protein hydrolysate production process began with grinding the J. curcas cake into small pieces. Then it was suspended in 2.5% sodium hydroxide solution with ratio between solution/ J. curcas cake at 80:1 (v/w). The hydrolysis reaction was controlled at temperature 50 °C in water bath for 45 minutes. After that, the supernatant (protein hydrolysate) was separated using centrifuge at 8000g for 30 minutes. The maximum yield of resulting protein hydrolysate was 73.27 % with 7.34% moisture, 71.69% total protein, 7.12% lipid, 2.49% ash. The product was also capable of well dissolving in water.

Realization of Design Features for Linear Flow Splitting in NX 6

Within the collaborative research center 666 a new product development approach and the innovative manufacturing method of linear flow splitting are being developed. So far the design process is supported by 3D-CAD models utilizing User Defined Features in standard CAD-Systems. This paper now presents new functions for generating 3D-models of integral sheet metal products with bifurcations using Siemens PLM NX 6. The emphasis is placed on design and semi-automated insertion of User Defined Features. Therefore User Defined Features for both, linear flow splitting and its derivative linear bend splitting, were developed. In order to facilitate the modeling process, an application was developed that guides through the insertion process. Its usability and dialog layout adapt known standard features. The work presented here has significant implications on the quality, accurateness and efficiency of the product generation process of sheet metal products with higher order bifurcations.

Flexible Laser Reduced Graphene Oxide/ MnO2 Electrode for Supercapacitor Applications

We succeeded to produce a high performance and flexible graphene/Manganese dioxide (G/MnO2) electrode coated on flexible polyethylene terephthalate (PET) substrate. The graphene film is initially synthesized by drop-casting the graphene oxide (GO) solution on the PET substrate, followed by simultaneous reduction and patterning of the dried film using carbon dioxide (CO2) laser beam with power of 1.8 W. Potentiostatic Anodic Deposition method was used to deposit thin film of MnO2 with different loading mass 10 – 50 and 100 μg.cm-2 on the pre-prepared graphene film. The electrodes were fully characterized in terms of structure, morphology, and electrochemical performance. A maximum specific capacitance of 973 F.g-1 was attributed when depositing 50μg.cm-2 MnO2 on the laser reduced graphene oxide rGO (or G/50MnO2) and over 92% of its initial capacitance was retained after 1000 cycles. The good electrochemical performance and long-term cycling stability make our proposed approach a promising candidate in the supercapacitor applications.

Development of Composite Adsorbent for Waste Water Treatment Using Adsorption and Electrochemical Regeneration

A unique combination of adsorption and electrochemical regeneration with a proprietary adsorbent material called Nyex 100 was introduced at the University of Manchester for waste water treatment applications. Nyex 100 is based on graphite intercalation compound. It is non porous and electrically conducing adsorbent material. This material exhibited very small BET surface area i.e. 2.75 m2g-1, in consequence, small adsorptive capacities for the adsorption of various organic pollutants were obtained. This work aims to develop composite adsorbent material essentially capable of electrochemical regeneration coupled with improved adsorption characteristics. An organic dye, acid violet 17 was used as standard organic pollutant. The developed composite material was successfully electrochemically regenerated using a DC current of 1 A for 60 minutes. Regeneration efficiency was maintained at around 100% for five adsorption-regeneration cycles.

Fe3O4 and Fe3O4@Au Nanoparticles: Synthesis and Functionalisation for Biomolecular Attachment

The use of magnetic and magnetic/gold core/shell nanoparticles in biotechnology or medicine has shown good promise due to their hybrid nature which possesses superior magnetic and optical properties. Some of these potential applications include hyperthermia treatment, bio-separations, diagnostics, drug delivery and toxin removal. Synthesis refinement to control geometric and magnetic/optical properties, and finding functional surfactants for biomolecular attachment, are requirements to meet application specifics. Various high-temperature preparative methods were used for the synthesis of iron oxide and gold-coated iron oxide nanoparticles. Different surface functionalities, such as 11-aminoundecanoic and 11-mercaptoundecanoic acid, were introduced on the surface of the particles to facilitate further attachment of biomolecular functionality and drug-like molecules. Nanoparticle thermal stability, composition, state of aggregation, size and morphology were investigated and the results from techniques such as Fourier Transform-Infra Red spectroscopy (FT-IR), Ultraviolet visible spectroscopy (UV-vis), Transmission Electron Microscopy (TEM) and thermal analysis are discussed.

Heavy Metal Concentrations in Fanworth (Cabombafurcata) from Lake Chini, Malaysia

Study was conducted to determine the concentration of copper, cadmium, lead and zinc in Cabomba furcata that found abundance in Lake Chini. This aquatic plant was collected randomly within the lake for heavy metal determination. Water quality measurement was undertaken in situ for temperature, pH, conductivity and dissolved oksigen using portable multi sensor probe YSI model 556. The C. furcata was digested using wet digestion method and heavy metal concentrations were analysed using Atomic Absorption Spectrometer (AAS) Perkin Elmer 4100B (flame method). Result of water quality classify Lake Chini between class II to class III using Malaysian Water Quality Standard. According to this standard, Lake Chini has moderate quality, which normal for natural lake. Heavy metal concentrations in C.furcata were low and found to be lower than the critical toxic value in aquatic plants. Oneway ANOVA test indicated the heavy metal concentrations in C.furcata were significantly differ between sampling location. Water quality and heavy metal concentrations indicates that Lake Chini was not receives anthropogenic load from nearby activities.