A Novel Design for Hybrid Space-Time Block Codes and Spatial Multiplexing Scheme

Space-time block codes (STBC) and spatial multiplexing (SM) are promising techniques that effectively exploit multipleinput multiple-output (MIMO) transmission to achieve more reliable communication and a higher multiplexing rate, respectively. In this paper, we study a practical design for hybrid scheme with multi-input multi-output orthogonal frequency division multiplexing (MIMOOFDM) systems to flexibly maximize the tradeoff between diversity and multiplexing gains. Unlike the existing STBC and SM designs which are suitable for the integer multiplexing rate, the proposed design can achieve arbitrary number of multiplexing rate.

Particle Swarm Optimization Based Genetic Algorithm for Two-Stage Transportation Supply Chain

Supply chain consists of all stages involved, directly or indirectly, includes all functions involved in fulfilling a customer demand. In two stage transportation supply chain problem, transportation costs are of a significant proportion of final product costs. It is often crucial for successful decisions making approaches in two stage supply chain to explicit account for non-linear transportation costs. In this paper, deterministic demand and finite supply of products was considered. The optimized distribution level and the routing structure from the manufacturing plants to the distribution centres and to the end customers is determined using developed mathematical model and solved by proposed particle swarm optimization based genetic algorithm. Numerical analysis of the case study is carried out to validate the model.

Suitability of Entry into the Euro Area: An Excursion in Selected Economies

The current situation in the eurozone raises a number of topics for discussion and to help in finding an answer to the question of whether a common currency is a more suitable means of coping with the impact of the financial crisis or whether national currencies are better suited to this. The economic situation in the EU is now considerably volatile and, due to problems with the fulfilment of the Maastricht convergence criteria, it is now being considered whether, in their further development, new member states will decide to distance themselves from the euro or will, in an attempt to overcome the crisis, speed up the adoption of the euro. The Czech Republic is one country with little interest in adopting the euro, justified by the fact that a better alternative to dealing with this crisis is an independent monetary policy and its ability to respond flexibly to the economic situation not only in Europe, but around the world. One attribute of the crisis in the Czech Republic and its mitigation is the freely floating exchange rate of the national currency. It is not only the Czech Republic that is attempting to alleviate the impact of the crisis, but also new EU member countries facing fresh questions to which theory have yet to provide wholly satisfactory answers. These questions undoubtedly include the problem of inflation targeting and the choice of appropriate instruments for achieving financial stability. The difficulty lies in the fact that these objectives may be contradictory and may require more than one means of achieving them. In this respect we may assume that membership of the euro zone might not in itself mitigate the development of the recession or protect the nation from future crises. We are of the opinion that the decisive factor in the development of any economy will continue to be the domestic economic policy and the operability of market economic mechanisms. We attempt to document this fact using selected countries as examples, these being the Czech Republic, Poland, Hungary, and Slovakia.

Minimization of Non-Productive Time during 2.5D Milling

In the modern manufacturing systems, the use of thermal cutting techniques using oxyfuel, plasma and laser have become indispensable for the shape forming of high quality complex components; however, the conventional chip removal production techniques still have its widespread space in the manufacturing industry. Both these types of machining operations require the positioning of end effector tool at the edge where the cutting process commences. This repositioning of the cutting tool in every machining operation is repeated several times and is termed as non-productive time or airtime motion. Minimization of this non-productive machining time plays an important role in mass production with high speed machining. As, the tool moves from one region to the other by rapid movement and visits a meticulous region once in the whole operation, hence the non-productive time can be minimized by synchronizing the tool movements. In this work, this problem is being formulated as a general travelling salesman problem (TSP) and a genetic algorithm approach has been applied to solve the same. For improving the efficiency of the algorithm, the GA has been hybridized with a noble special heuristic and simulating annealing (SA). In the present work a novel heuristic in the combination of GA has been developed for synchronization of toolpath movements during repositioning of the tool. A comparative analysis of new Meta heuristic techniques with simple genetic algorithm has been performed. The proposed metaheuristic approach shows better performance than simple genetic algorithm for minimization of nonproductive toolpath length. Also, the results obtained with the help of hybrid simulated annealing genetic algorithm (HSAGA) are also found better than the results using simple genetic algorithm only.

Continuity Microplating using Image Processing

A real time image-guided electroplating system is proposed in this paper. Unlike previous electroplating systems, instead of using the intermittent mode to electroplate 500um long copper specimen, a CCD camera and a motion controller are used to adjust anode-cathode distance to obtain better results. Since the image of the gap distance is highly deteriorated due to complex chemical-electrical operation inside the electrolyte, to determine the gap distance, an image processing algorithm is developed and mainly based on the entropy and energy values. In addition, the color and incidence direction of light source are also discussed to help the image process in this paper. From the experiment results, the specimens created by the proposed system show better structure, better uniformity and better finishing surface compared to those by previous intermittent electroplating setup.

Capturing an Unknown Moving Target in Unknown Territory using Vision and Coordination

In this paper we present an extension to Vision Based LRTA* (VLRTA*) known as Vision Based Moving Target Search (VMTS) for capturing unknown moving target in unknown territory with randomly generated obstacles. Target position is unknown to the agents and they cannot predict its position using any probability method. Agents have omni directional vision but can see in one direction at some point in time. Agent-s vision will be blocked by the obstacles in the search space so agent can not see through the obstacles. Proposed algorithm is evaluated on large number of scenarios. Scenarios include grids of sizes from 10x10 to 100x100. Grids had obstacles randomly placed, occupying 0% to 50%, in increments of 10%, of the search space. Experiments used 2 to 9 agents for each randomly generated maze with same obstacle ratio. Observed results suggests that VMTS is effective in locate target time, solution quality and virtual target. In addition, VMTS becomes more efficient if the number of agents is increased with proportion to obstacle ratio.

Beam Orientation Optimization Using Ant Colony Optimization in Intensity Modulated Radiation Therapy

In intensity modulated radiation therapy (IMRT) treatment planning, beam angles are usually preselected on the basis of experience and intuition. Therefore, getting an appropriate beam configuration needs a very long time. Based on the present situation, the paper puts forward beam orientation optimization using ant colony optimization (ACO). We use ant colony optimization to select the beam configurations, after getting the beam configuration using Conjugate Gradient (CG) algorithm to optimize the intensity profiles. Combining with the information of the effect of pencil beam, we can get the global optimal solution accelerating. In order to verify the feasibility of the presented method, a simulated and clinical case was tested, compared with dose-volume histogram and isodose line between target area and organ at risk. The results showed that the effect was improved after optimizing beam configurations. The optimization approach could make treatment planning meet clinical requirements more efficiently, so it had extensive application perspective.

An E-learning System Architecture based on Cloud Computing

The massive proliferation of affordable computers, Internet broadband connectivity and rich education content has created a global phenomenon in which information and communication technology (ICT) is being used to transform education. Therefore, there is a need to redesign the educational system to meet the needs better. The advent of computers with sophisticated software has made it possible to solve many complex problems very fast and at a lower cost. This paper introduces the characteristics of the current E-Learning and then analyses the concept of cloud computing and describes the architecture of cloud computing platform by combining the features of E-Learning. The authors have tried to introduce cloud computing to e-learning, build an e-learning cloud, and make an active research and exploration for it from the following aspects: architecture, construction method and external interface with the model.

Analysis of Public-Key Cryptography for Wireless Sensor Networks Security

With the widespread growth of applications of Wireless Sensor Networks (WSNs), the need for reliable security mechanisms these networks has increased manifold. Many security solutions have been proposed in the domain of WSN so far. These solutions are usually based on well-known cryptographic algorithms. In this paper, we have made an effort to survey well known security issues in WSNs and study the behavior of WSN nodes that perform public key cryptographic operations. We evaluate time and power consumption of public key cryptography algorithm for signature and key management by simulation.

Antibacterial Effect of Silver Nanoparticles on Multi Drug Resistant Pseudomonas Aeruginosa

Multidrug resistant organisms have been taunting the medical world for the last few decades. Even with new antibiotics developed, resistant strains have emerged soon after. With the advancement of nanotechnology, we investigated colloidal silver nanoparticles for its antimicrobial activity against Pseudomonas aeruginosa. This organism is a multidrug resistant which contributes to the high morbidity and mortality in immunocompromised patients. Five multidrug resistant strains were used in this study. The antimicrobial effect was studied using the disc diffusion and broth dilution techniques. An inhibition zone of 11 mm was observed with 10 μg dose of the nanoparticles. The nanoparticles exhibited MIC of 50 μg/ml when added at the lag phase and the subinhibitory concentration was measured as 100 μg/ml. The MIC50 value showed to be 15 μg/ml. This study suggests that silver nanoparticles can be further developed as an antimicrobial agent, hence decreasing the burden of the multidrug resistance phenomena.

Adaptive Square-Rooting Companding Technique for PAPR Reduction in OFDM Systems

This paper addresses the problem of peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems. It also introduces a new PAPR reduction technique based on adaptive square-rooting (SQRT) companding process. The SQRT process of the proposed technique changes the statistical characteristics of the OFDM output signals from Rayleigh distribution to Gaussian-like distribution. This change in statistical distribution results changes of both the peak and average power values of OFDM signals, and consequently reduces significantly the PAPR. For the 64QAM OFDM system using 512 subcarriers, up to 6 dB reduction in PAPR was achieved by square-rooting technique with fixed degradation in bit error rate (BER) equal to 3 dB. However, the PAPR is reduced at the expense of only -15 dB out-ofband spectral shoulder re-growth below the in-band signal level. The proposed adaptive SQRT technique is superior in terms of BER performance than the original, non-adaptive, square-rooting technique when the required reduction in PAPR is no more than 5 dB. Also, it provides fixed amount of PAPR reduction in which it is not available in the original SQRT technique.

Coupled Electromagnetic and Thermal Field Modeling of a Laboratory Busbar System

The paper presents coupled electromagnetic and thermal field analysis of busbar system (of rectangular cross-section geometry) submitted to short circuit conditions. The laboratory model was validated against both analytical solution and experimental observations. The considered problem required the computation of the detailed distribution of the power losses and the heat transfer modes. In this electromagnetic and thermal analysis, different definitions of electric busbar heating were considered and compared. The busbar system is a three phase one and consists of aluminum, painted aluminum and copper busbar. The solution to the coupled field problem is obtained using the finite element method and the QuickField™ program. Experiments have been carried out using two different approaches and compared with computed results.

Towards Design of Context-Aware Sensor Grid Framework for Agriculture

This paper is to present context-aware sensor grid framework for agriculture and its design challenges. Use of sensor networks in the domain of agriculture is not new. However, due to the unavailability of any common framework, solutions that are developed in this domain are location, environment and problem dependent. Keeping the need of common framework for agriculture, Context-Aware Sensor Grid Framework is proposed. It will be helpful in developing solutions for majority of the problems related to irrigation, pesticides spray, use of fertilizers, regular monitoring of plot and yield etc. due to the capability of adjusting according to location and environment. The proposed framework is composed of three layer architecture including context-aware application layer, grid middleware layer and sensor network layer.

Effect of Electromagnetic Fields on Structure and Pollen Grains Development in Chenopodium album L

The role of the pollen grain, with to the reproductive process of higher plants, is to deliver the spermatic cells to the embryo sac for egg fertilization. The aim of this project was study the effect of electromagnetic fields on structure and pollen grains development in Chenopodium album. Anthers of Chenopodium album L. were collected at different stages of development from control (without electromagnetic field) and plants grown at 10m from the field sources. Structure and development of pollen grains were studied and compared. The studying pollen structure by Light and Scanning electron microscopy showed that electromagnetic fields reduction of pollen grains number and male sterility, thus , in some anthers, pollen grains were attached together and deformed compared to control ones. The data presented suggest that prolonged exposures of plants to magnetic field may cause different biological effects at the cellular tissue and organ levels.

A Similarity Metric for Assessment of Image Fusion Algorithms

In this paper, we present a novel objective nonreference performance assessment algorithm for image fusion. It takes into account local measurements to estimate how well the important information in the source images is represented by the fused image. The metric is based on the Universal Image Quality Index and uses the similarity between blocks of pixels in the input images and the fused image as the weighting factors for the metrics. Experimental results confirm that the values of the proposed metrics correlate well with the subjective quality of the fused images, giving a significant improvement over standard measures based on mean squared error and mutual information.

Stress Analysis of Non-persistent Rock Joints under Biaxial Loading

Two-dimensional finite element model was created in this work to investigate the stresses distribution within rock-like samples with offset open non-persistent joints under biaxial loading. The results of this study have explained the fracture mechanisms observed in tests on rock-like material with open non-persistent offset joints [1]. Finite element code SAP2000 was used to study the stresses distribution within the specimens. Four-nodded isoperimetric plain strain element with two degree of freedom per node, and the three-nodded constant strain triangular element with two degree of freedom per node were used in the present study.The results of the present study explained the formation of wing cracks at the tip of the joints for low confining stress as well as the formation of wing cracks at the middle of the joint for the higher confining stress. High shear stresses found in the numerical study at the tip of the joints explained the formation of secondary cracks at the tip of the joints in the experimental study. The study results coincide with the experimental observations which showed that for bridge inclination of 0o, the coalescence occurred due to shear failure and for bridge inclination of 90o the coalescence occurred due to tensile failure while for the other bridge inclinations coalescence occurred due to mixed tensile and shear failure.

Processing the Medical Sensors Signals Using Fuzzy Inference System

Sensors possess several properties of physical measures. Whether devices that convert a sensed signal into an electrical signal, chemical sensors and biosensors, thus all these sensors can be considered as an interface between the physical and electrical equipment. The problem is the analysis of the multitudes of saved settings as input variables. However, they do not all have the same level of influence on the outputs. In order to identify the most sensitive parameters, those that can guide users in gathering information on the ground and in the process of model calibration and sensitivity analysis for the effect of each change made. Mathematical models used for processing become very complex. In this paper a fuzzy rule-based system is proposed as a solution for this problem. The system collects the available signals information from sensors. Moreover, the system allows the study of the influence of the various factors that take part in the decision system. Since its inception fuzzy set theory has been regarded as a formalism suitable to deal with the imprecision intrinsic to many problems. At the same time, fuzzy sets allow to use symbolic models. In this study an example was applied for resolving variety of physiological parameters that define human health state. The application system was done for medical diagnosis help. The inputs are the signals expressed the cardiovascular system parameters, blood pressure, Respiratory system paramsystem was done, it will be able to predict the state of patient according any input values.

On the Design of Shape Memory Alloy Locking Mechanism: A Novel Solution for Laparoscopic Ligation Process

The blood ducts must be occluded to avoid loss of blood from vessels in laparoscopic surgeries. This paper presents a locking mechanism to be used in a ligation laparoscopic procedure (LigLAP I), as an alternative solution for a stapling procedure. Currently, stapling devices are being used to occlude vessels. Using these devices may result in some problems, including injury of bile duct, taking up a great deal of space behind the vessel, and bile leak. In this new procedure, a two-layer suture occludes a vessel. A locking mechanism is also required to hold the suture. Since there is a limited space at the device tip, a Shape Memory Alloy (SMA) actuator is used in this mechanism. Suitability for cleanroom applications, small size, and silent performance are among the advantages of SMA actuators in biomedical applications. An experimental study is conducted to examine the function of the locking mechanism. To set up the experiment, a prototype of a locking mechanism is built using nitinol, which is a nickel-titanium shape memory alloy. The locking mechanism successfully locks a polymer suture for all runs of the experiment. In addition, the effects of various surface materials on the applied pulling forces are studied. Various materials are mounted at the mechanism tip to compare the maximum pulling forces applied to the suture for each material. The results show that the various surface materials on the device tip provide large differences in the applied pulling forces.

Areas of Lean Manufacturing for Productivity Improvement in a Manufacturing Unit

Many organisations are nowadays interested to adopt lean manufacturing strategy that would enable them to compete in this competitive globalisation market. In this respect, it is necessary to assess the implementation of lean manufacturing in different organisations so that the important best practices can be identified. This paper describes the development of key areas which will be used to assess the adoption and implementation of lean manufacturing practices. There are some key areas developed to evaluate and reduce the most optimal projects so as to enhance their production efficiency and increase the purpose of the economic benefits of the manufacturing unit. Lean manufacturing is becoming lean enterprise by treating its customers and suppliers as partners. This gives the extra edge in today-s cost and time competitive markets. The organisation is becoming strong in all the conventional competition points. They are Price, Quality and Delivery. Lean enterprise owners can deliver high quality products quickly, with low price.

Aggressive Interactions in Hospital Emergency Units

International literature emphasizes on the concern regarding the phenomenon of aggression in hospital. This paper focuses on the reality of aggressive interactions reigning within an emergency triage involving three chaps of protagonists: the professionals, the patients and their carers. The data collection was made from a grid of observation, in which the various variables exposed in the literature were integrated. They observations took place around the clock, for three weeks, at the rate of one week a month. In this research 331 aggressive interactions have been listed and analyzed by means of the software SPSS. This research is one of the very few continuous observation surveys in the literature. It shows the various human factors at play in the emergence of aggressive interaction. The data may be used both for taking steps in primary prevention, thanks to the analysis of interaction modes, and in secondary prevention by integrating the useful results in situational prevention.