State Feedback Controller Design via Takagi- Sugeno Fuzzy Model: LMI Approach

In this paper, we introduce a robust state feedback controller design using Linear Matrix Inequalities (LMIs) and guaranteed cost approach for Takagi-Sugeno fuzzy systems. The purpose on this work is to establish a systematic method to design controllers for a class of uncertain linear and non linear systems. Our approach utilizes a certain type of fuzzy systems that are based on Takagi-Sugeno (T-S) fuzzy models to approximate nonlinear systems. We use a robust control methodology to design controllers. This method not only guarantees stability, but also minimizes an upper bound on a linear quadratic performance measure. A simulation example is presented to show the effectiveness of this method.

Effect of Groove Location on the Dynamic Characteristics of Multiple Axial Groove Water Lubricated Journal Bearing

The stability characteristics of water lubricated journal bearings having three axial grooves are obtained theoretically. In this lubricant (water) is fed under pressure from one end of the bearing, through the 3-axial grooves (groove angles may vary). These bearings can use the process fluid as the lubricant, as in the case of feed water pumps. The Reynolds equation is solved numerically by the finite difference method satisfying the boundary conditions. The stiffness and damping coefficient for various bearing number and eccentricity ratios, assuming linear pressure drop along the groove, shows that smaller groove angles better results.

Mathematical Model for Dengue Disease with Maternal Antibodies

Mathematical models can be used to describe the dynamics of the spread of infectious disease between susceptibles and infectious populations. Dengue fever is a re-emerging disease in the tropical and subtropical regions of the world. Its incidence has increased fourfold since 1970 and outbreaks are now reported quite frequently from many parts of the world. In dengue endemic regions, more cases of dengue infection in pregnancy and infancy are being found due to the increasing incidence. It has been reported that dengue infection was vertically transmitted to the infants. Primary dengue infection is associated with mild to high fever, headache, muscle pain and skin rash. Immune response includes IgM antibodies produced by the 5th day of symptoms and persist for 30-60 days. IgG antibodies appear on the 14th day and persist for life. Secondary infections often result in high fever and in many cases with hemorrhagic events and circulatory failure. In the present paper, a mathematical model is proposed to simulate the succession of dengue disease transmission in pregnancy and infancy. Stability analysis of the equilibrium points is carried out and a simulation is given for the different sets of parameter. Moreover, the bifurcation diagrams of our model are discussed. The controlling of this disease in infant cases is introduced in the term of the threshold condition.

Web-GIS based Outdoor Education Program for Elementary Schools

This study, focusing on the importance of encouraging outdoor activities for children, aims to propose and implement a Web-GIS based outdoor education program for elementary schools, which will then be evaluated by users. Specifically, for the purpose of improved outdoor activities in the elementary school education, the outdoor education program, with chiefly using the Web-GIS that provides a good information provision and sharing tool, is proposed and implemented before being evaluated by users. Conclusions of the study boil down to: (1) An eight-staged outdoor education program based on the Web-GIS was proposed for a “second school" of an elementary school that was then implemented before being evaluated by users (teachers, instructors, students, and their parents). (2) The program generally received a good evaluation, while a lot of students and their parents evaluated negatively for the degree of discovery and for the degree of interest, respectively, in the questionnaire survey of students and their parents conducted after the “second school". The surveys clearly show that an issue to be solved, from the viewpoint of teachers in particular, is the establishment of the GIS that will easily represent teaching materials developed by teachers and of Web-GIS, and improved significance of the use of GIS and Web-GIS for their widespread.

CAD Tools Broadband Amplifier Design

This paper proposed a new CAD tools for microwave amplifier design. The proposed tool is based on survey about the broadband amplifier design methods, such as the Feedback amplifiers, balanced amplifiers and Compensated Matching Network The proposed tool is developed for broadband amplifier using a compensated matching network "unconditional stability amplifier". The developed program is based on analytical procedures with ability of smith chart explanation. The C# software is used for the proposed tools implementation. The program is applied on broadband amplifier as an example for testing. The designed amplifier is considered as a broadband amplifier at the range 300-700 MHz. The results are highly agreement with the expected results. Finally, these methods can be extended for wide band amplifier design.

Spreading of Swirling Double–Concentric Jets at Low and High Pulsation Intensities

The spreading characteristics of acoustically excited swirling double-concentric jets were studied experimentally. The central jet was acoustically excited at low and high pulsation intensities. A smoke wire flow visualization and a hot-wire anemometer velocity measurement results show that excitation forces a vortex ring to roll-up from the edge of the central tube during each excitation period. At low pulsation intensities, the vortex ring evolves downstream, and eventually breaks up into turbulent eddies. At high pulsation intensities, the primary vortex ring evolves and a series of trailing vortex rings form during the same period of excitation. The trailing vortex rings accelerate while evolving downstream and overtake the primary vortex ring within the same cycle. In the process, the primary vortex ring becomes unstable and breaks up early. The effect of the fast traveling trailing vortex rings combined with the swirl motion of the annular flow improve jet spreading compared with the naturally evolving jets.

Numerical Studies on Flow Field Characteristics of Cavity Based Scramjet Combustors

The flow field within the combustor of scramjet engine is very complex and poses a considerable challenge in the design and development of a supersonic combustor with an optimized geometry. In this paper comprehensive numerical studies on flow field characteristics of different cavity based scramjet combustors with transverse injection of hydrogen have been carried out for both non-reacting and reacting flows. The numerical studies have been carried out using a validated 2D unsteady, density based 1st-order implicit k-omega turbulence model with multi-component finite rate reacting species. The results show a wide variety of flow features resulting from the interactions between the injector flows, shock waves, boundary layers, and cavity flows. We conjectured that an optimized cavity is a good choice to stabilize the flame in the hypersonic flow, and it generates a recirculation zone in the scramjet combustor. We comprehended that the cavity based scramjet combustors having a bearing on the source of disturbance for the transverse jet oscillation, fuel/air mixing enhancement, and flameholding improvement. We concluded that cavity shape with backward facing step and 45o forward ramp is a good choice to get higher temperatures at the exit compared to other four models of scramjet combustors considered in this study.

pth Moment Exponential Synchronization of a Class of Chaotic Neural Networks with Mixed Delays

This paper studies the pth moment exponential synchronization of a class of stochastic neural networks with mixed delays. Based on Lyapunov stability theory, by establishing a new integrodifferential inequality with mixed delays, several sufficient conditions have been derived to ensure the pth moment exponential stability for the error system. The criteria extend and improve some earlier results. One numerical example is presented to illustrate the validity of the main results.

Effect of Chemical Pretreatments and Dehydration Methods on Quality Characteristics of Tomato Powder and Its Storage Stability

Dehydration process was carried out for tomato slices of var. Avinash after giving different pre-treatments such as calcium chloride (CaCl2), potassium metabisulphite (KMS), calcium chloride and potassium metabisulphite (CaCl2 +KMS), and sodium chloride (NaCl). Untreated samples served as control. Solar drier and continuous conveyor (tunnel) drier were used for dehydration. Quality characteristics of tomato slices viz. moisture content, sugar, titratable acidity, lycopene content, dehydration ratio, rehydration ratio and non-enzymatic browning as affected by dehydration process were studied. Storage study was also carried out for a period of six months for tomato powder packed into different types of packaging materials viz. metalized polyester (MP) film and low density poly ethylene (LDPE). Changes in lycopene content and non-enzymatic browning (NEB) were estimated during storage at room temperature. Pretreatment of 5 mm thickness of tomato slices with calcium chloride in combination with potassium metabisulphite and drying using a tunnel drier with subsequent storage of product in metalized polyester bags was selected as the best process.

Robust Stability Criteria for Uncertain Genetic Regulatory Networks with Time-Varying Delays

This paper presents the robust stability criteria for uncertain genetic regulatory networks with time-varying delays. One key point of the criterion is that the decomposition of the matrix ˜D into ˜D = ˜D1 + ˜D2. This decomposition corresponds to a decomposition of the delayed terms into two groups: the stabilizing ones and the destabilizing ones. This technique enables one to take the stabilizing effect of part of the delayed terms into account. Meanwhile, by choosing an appropriate new Lyapunov functional, a new delay-dependent stability criteria is obtained and formulated in terms of linear matrix inequalities (LMIs). Finally, numerical examples are presented to illustrate the effectiveness of the theoretical results.

Design of Coal Quality Disturbance Free System for Coordinated Control System Based on Gain Scheduling

The economic and stable operation was affected seriously by coal quality disturbance for power plants. Based on model analysis, influence of the disturbance can be considered as gain change of control system. Power capability coefficient of coal was constructed to inhibit it. Accuracy of the coefficient was verified by operating data. Then coal quality disturbance free system based on gain scheduling was designed for coordinated control system. Simulation showed that, the strategy improved control quality obviously, and inhibited the coal quality disturbance.

Species Spreading due to Environmental Hostility, Dispersal Adaptation and Allee Effects

A phenomenological model for species spreading which incorporates the Allee effect, a species- maximum attainable growth rate, collective dispersal rate and dispersal adaptability is presented. This builds on a well-established reaction-diffusion model for spatial spreading of invading organisms. The model is phrased in terms of the “hostility" (which quantifies the Allee threshold in relation to environmental sustainability) and dispersal adaptability (which measures how a species is able to adapt its migratory response to environmental conditions). The species- invading/retreating speed and the sharpness of the invading boundary are explicitly characterised in terms of the fundamental parameters, and analysed in detail.

Nonlinear Sensitive Control of Centrifugal Compressor

In this work, we treat the problems related to chemical and petrochemical plants of a certain complex process taking the centrifugal compressor as an example, a system being very complex by its physical structure as well as its behaviour (surge phenomenon). We propose to study the application possibilities of the recent control approaches to the compressor behaviour, and consequently evaluate their contribution in the practical and theoretical fields. Facing the studied industrial process complexity, we choose to make recourse to fuzzy logic for analysis and treatment of its control problem owing to the fact that these techniques constitute the only framework in which the types of imperfect knowledge can jointly be treated (uncertainties, inaccuracies, etc..) offering suitable tools to characterise them. In the particular case of the centrifugal compressor, these imperfections are interpreted by modelling errors, the neglected dynamics, no modelisable dynamics and the parametric variations. The purpose of this paper is to produce a total robust nonlinear controller design method to stabilize the compression process at its optimum steady state by manipulating the gas rate flow. In order to cope with both the parameter uncertainty and the structured non linearity of the plant, the proposed method consists of a linear steady state regulation that ensures robust optimal control and of a nonlinear compensation that achieves the exact input/output linearization.

Efficient CNC Milling by Adjusting Material Removal Rate

This paper describes a combined mathematicalgraphical approach for optimum tool path planning in order to improve machining efficiency. A methodology has been used that stabilizes machining operations by adjusting material removal rate in pocket milling operations while keeping cutting forces within limits. This increases the life of cutting tool and reduces the risk of tool breakage, machining vibration, and chatter. Case studies reveal the fact that application of this approach could result in a slight increase of machining time, however, a considerable reduction of tooling cost, machining vibration, noise and chatter can be achieved in addition to producing a better surface finish.

Effects of Various Substrate Openings for Electronic Cooling under Forced and Natural Convection

This study experimentally investigates the heat transfer effects of forced convection and natural convection under different substrate openings design. A computational fluid dynamics (CFD) model was established and implemented to verify and explain the experimental results and heat transfer behavior. It is found that different opening position will destroy the growth of the boundary layer on substrates to alter the cooling ability for both forced under low Reynolds number and natural convection. Nevertheless, having too many opening may reduce heat conduction and affect the overall heat transfer performance. This study provides future researchers with a guideline on designing and electronic package manufacturing.

Performance Analysis of Fuzzy Logic Based Unified Power Flow Controller

FACTS devices are used to control the power flow, to increase the transmission capacity and to optimize the stability of the power system. One of the most widely used FACTS devices is Unified Power Flow Controller (UPFC). The controller used in the control mechanism has a significantly effects on controlling of the power flow and enhancing the system stability of UPFC. According to this, the capability of UPFC is observed by using different control mechanisms based on P, PI, PID and fuzzy logic controllers (FLC) in this study. FLC was developed by taking consideration of Takagi- Sugeno inference system in the decision process and Sugeno-s weighted average method in the defuzzification process. Case studies with different operating conditions are applied to prove the ability of UPFC on controlling the power flow and the effectiveness of controllers on the performance of UPFC. PSCAD/EMTDC program is used to create the FLC and to simulate UPFC model.

On Innovation and Knowledge Economy in Russia

Innovational development of regions in Russia is generally faced with the essential influence from federal and local authorities. The organization of effective mechanism of innovation development (and self-development) is impossible without establishment of defined institutional conditions in the analyzed field. Creative utilization of scientific concepts and information should merge, giving rise to continuing innovation and advanced production. The paper presents an analysis of institutional conditions in the field of creation and development of innovation activity infrastructure and transferring of knowledge and skills between different economic agents in Russia. Knowledge is mainly privately owned, developed through R&D investments and incorporated into technology or a product. Innovation infrastructure is a strong concentration mechanism of advanced facilities, which are mainly located inside large agglomerations or city-regions in order to benefit from scale effects in both input markets (human capital, private financial capital) and output markets (higher education services, research services). The empirical results of the paper show that in the presence of more efficient innovation and knowledge transfer and transcoding system and of a more open attitude of economic agents towards innovation, the innovation and knowledge capacity of regional economy is much higher.

On Stability of Stiffened Cylindrical Shells with Varying Material Properties

The static stability analysis of stiffened functionally graded cylindrical shells by isotropic rings and stringers subjected to axial compression is presented in this paper. The Young's modulus of the shell is taken to be function of the thickness coordinate. The fundamental relations, the equilibrium and stability equations are derived using the Sander's assumption. Resulting equations are employed to obtain the closed-form solution for the critical axial loads. The effects of material properties, geometric size and different material coefficient on the critical axial loads are examined. The analytical results are compared and validated using the finite element model.

Bactericidal Properties of Carbohydrate-Stabilized Platinum Oxide Nanoparticles

Platinum oxide nanoparticles were prepared by a simple hydrothermal route and chemical reduction using carbohydrates (Fructose and sucrose) as the reducing and stabilizing agents. The crystallite size of these nanoparticles was evaluated from X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM) and was found to be 10 nm as shown in figure 1, which is the demonstration of EM bright field and transmission electron microscopy. The effect of carbohydrates on the morphology of the nanoparticles was studied using TEM (Figure 1). The nanoparticles (100 μg/ml) were administered to the Pseudomonas Stutzeri and Lactobacillus cultures and the incubation was done at 35 oC for 24 hours. The nanocomposites exhibited interesting inhibitory as well as bactericidal activity against P. Stutzeri and and Lactobacillus species. Incorporation of nanoparticles also increased the thermal stability of the carbohydrates.

Emergency Response Plan Establishment and Computerization through the Analysis of the Disasters Occurring on Long-Span Bridges by Type

In this paper, a strategy for long-span bridge disaster response was developed, divided into risk analysis, business impact analysis, and emergency response plan. At the risk analysis stage, the critical risk was estimated. The critical risk was “car accident."The critical process by critical-risk classification was assessed at the business impact analysis stage. The critical process was the task related to the road conditions and traffic safety. Based on the results of the precedent analysis, an emergency response plan was established. By making the order of the standard operating procedures clear, an effective plan for dealing with disaster was formulated. Finally, a prototype software was developed based on the research findings. This study laid the foundation of an information-technology-based disaster response guideline and is significant in that it computerized the disaster response plan to improve the plan-s accessibility.