Evaluation of Droplet Sizes from Video Images for Metal Working Fluids

Metal working fluids were used in the preparation of oil in water emulsions. The size of oil droplets were evaluated by using the analysis of video images taken from the zeta potential measurements. The evaluated size distributions for emulsions were also tested by microscopic analysis. In addition, emulsion stabilities were discussed depending on electrolyte concentration and pH. The results showed that the stability of oil emulsions was strongly related to pH and the concentration of CaCl2. However, the same dependency was not observed for NaCl.

Preparation of Metallic Copper Nanoparticles by Reduction of Copper Ions in Aqueous Solution and Their Metal-Metal Bonding Properties

This paper describes a method for preparing metallic Cu nanoparticles in aqueous solution, and a metal-metal bonding technique using the Cu particles.Preparation of the Cu particle colloid solution was performed in water at room temperature in air using a copper source (0.01 M Cu(NO3)2), a reducing reagent (0.2 - 1.0 M hydrazine), and stabilizers (0.5×10-3 M citric acid and 5.0×10-3 M cetyltrimethylammonium bromide). The metallic Cu nanoparticles with sizes of ca. 60nm were prepared at all the hydrazine concentrations examined. A stage and a plate of metallic Cu were successfully bonded under annealing at 400oC and pressurizing at 1.2 MPa for 5min in H2 gas with help of the metallic Cu particles. A shear strength required for separating the bonded Cu substrates reached the maximum value at a hydrazine concentration of 0.8M, and it decreased beyond the concentration. Consequently, the largest shear strength of 22.9 MPa was achieved at the 0.8 M hydrazine concentration.

Fundamental Variables of Final Account Closing Success in Construction Projects in Malaysia

Project management process starts from the planning stage up to the stage of completion (handover of buildings, preparation of the final accounts and the closing balance). Seeing as this process is not easy to be implemented efficiently and effectively, the issue of unsuccessful delivery as per contract in construction has become a major problem for construction projects. These issues have been blamed mainly on inefficient traditional construction practices that continue to dominate the current industry. This is due to several factors, such as environments of construction technology, sophisticated design and customer demand, that are constantly changing and influencing, either directly or indirectly, to the practice of management. Among the identified influences are physical environment, social environment, information environment, political and moral atmosphere. Therefore, this paper is emerged to determine the fundamental variables in the final account closing success in construction project. This aim can be achieved via its objectives of identifying the key constraints to the closing of final accounts in construction projects in Malaysia, investigating solutions to the identified constraints and analysing the relative levels of impact of the identified constraints. It is expected that this paper provides effective measures to avoid or at least reduce the problems in final account closing to the optimum level. It is also anticipated that the finding or outcome reported in this paper could address the unsuccessful contributors in final account closing and define tools for their mitigation for the better development of construction project.

Green-Reduction of Covalently Functionalized Graphene Oxide with Varying Stoichiometry

Graphene-based materials were prepared by chemical reduction of covalently functionalized graphene oxide with environmentally friendly agents. Two varying stoichiometry of graphene oxide (GO) induced by using different chemical preparation conditions, further covalent functionalization of the GO materials with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride / N-hydroxysuccinimide and ascorbic acid and sodium bisulfite as reducing agents were exploited in order to obtain controllable properties of the final solution-based graphene materials. The obtained materials were characterized by thermo-gravimetric analysis, Fourier transform infrared and Raman spectroscopy and X-ray diffraction. The results showed successful functionalization of the GO materials, while a comparison of the deoxygenation efficiency of the two-type functionalized graphene oxide suspensions by the different reducing agents has been made, revealing the strong dependence of their properties on the GO structure and reducing agents.

Biomechanics Analysis of Bicross Start

The article deals with a biomechanics analysis of the classic bicross start with a backward movement of the bike. This is a case study analyzing this type of start in two bicross riders representing the Czech Republic. Based on the 3D kinematic analysis and with a special emphasis on the ankle movement we have divided the start into five phases – phase n. 1 – reaction time, phase n. 2 – preparation movements time, phase n. 3 – first pedal stroke time, phase n. 4 – dead point pedal passage time, phase n. 5 – second pedal stroke time. Further we have demonstrated the significance of kinematic characteristics in various stages of the bicross start including their values and the extent of change. These primarily include the vector of the instantaneous velocity of the head, wrists, elbows, shoulders, hip and knee joints. The significant angle characteristics have been noted in elbow, shoulder, hip and knee joints. The results of this work indicate the types of movement prevailing in the respective phases and as such are expected to serve as a basis for further analyses of this movement structure performed, however, on a large research sample.

Novel NMR-Technology to Assess Food Quality and Safety

High Resolution NMR Spectroscopy offers unique screening capabilities for food quality and safety by combining non-targeted and targeted screening in one analysis. The objective is to demonstrate, that due to its extreme reproducibility NMR can detect smallest changes in concentrations of many components in a mixture, which is best monitored by statistical evaluation however also delivers reliable quantification results. The methodology typically uses a 400 MHz high resolution instrument under full automation after minimized sample preparation. For example one fruit juice analysis in a push button operation takes at maximum 15 minutes and delivers a multitude of results, which are automatically summarized in a PDF report. The method has been proven on fruit juices, where so far unknown frauds could be detected. In addition conventional targeted parameters are obtained in the same analysis. This technology has the advantage that NMR is completely quantitative and concentration calibration only has to be done once for all compounds. Since NMR is so reproducible, it is also transferable between different instruments (with same field strength) and laboratories. Based on strict SOP`s, statistical models developed once can be used on multiple instruments and strategies for compound identification and quantification are applicable as well across labs.

Novel Process Formulation of Multiple Unit Tablet of Pantoprazole

The present invention relates to multiple-unit tablet dosage forms, which is composed of several subunits (multiparticulates/pellets). Each small multiparticulate further composed of many layers. Some layer contains drug substance; others are rate controlling polymer. The resulting multiple-unit tablet dosage forms of pantoprazole were satisfactory fabricated. Pelletization technique has some advantages over coated tablet formulation. In coated tablet the coating may be damaged and a pinhole possibly formed that would result in increased release of drug in stomach and may be deactivated in stomach juices. If the coat of some pellets may be damaged that would not affect the release properties of the multiple-unit tablet. Hence they are beneficial in this aspect. The results confirmed the successful preparation of stable and bioequivalent once daily controlled release multiple-unit tablets of pantoprazole.

Good Practices in the Development of the Erasmus Mundus Master program in Color in Informatics and Media Technology

The main objective of this paper is to identify and disseminate good practice in quality assurance and enhancement as well as in teaching and learning at master level. This paper focuses on the experience of the Erasmus Mundus Master program CIMET (Color in Informatics and Media Technology). Amongst topics covered, we discuss the adjustments necessary to a curriculum designed for excellent international students and their preparation for a global labor market.

Hydrogels Based on Carrageenan Extracted from Kappaphycus alvarezii

Preparation of hydrogel based on carrageenan extracted from Kappaphycus alvarezii was conducted with film immersion in glutaraldehyde solution (GA 4%w/w) for 2min and then followed by thermal curing at 110°C for 25min. The method of carrageenan recovery strongly determines the properties of crosslinked carrageenan. Hydrogel obtained from alkali treated carrageenan showed higher swelling ability compared to hydrogel from nonalkali treated carrageenan. Hydrogel from alkali treated showed the ability of sensitive to pH media.

In Vivo Evaluation of Stable Cream Containing Flavonoids on Hydration and TEWL of Human Skin

Antioxidants contribute to endogenous photoprotection and are important for the maintenance of skin health. The study was carried out to compare the skin hydration and transepidermal water loss (TEWL) effects of a stable cosmetic preparation containing flavonoids, following two applications a day over a period of tenth week. The skin trans-epidermal water loss and skin hydration effect was measured at the beginning and up to the end of study period of ten weeks. Any effect produced was measured by Corneometer and TEWA meter (Non-invasive probe). Two formulations were developed for this study design. Formulation one the control formulation in which no apple juice extract( Flavonoids) was incorporated while second one was the active formulation in which the apple juice extract (3%) containing flavonoids was incorporated into water in oil emulsion using Abil EM 90 as an emulsifier. Stable formulations (control and Active) were applied on human cheeks (n = 12) for a study period of 10 weeks. Result of each volunteer of skin hydration and TEWL was measured by corneometer and TEWA meter. By using ANOVA and Paired sample t test as a statistical evaluation, result of both base and formulation were compared. Statistical significant results (p≤0.05) were observed regarding skin hydration and TEWL when two creams, control and Formulation were compared. It showed that desired formulation (Active) may have interesting application as an active moisturizing cream on healthy skin.

Pharmaceutical Microencapsulation Technology for Development of Controlled Release Drug Delivery systems

This article demonstrated development of controlled release system of an NSAID drug, Diclofenac sodium employing different ratios of Ethyl cellulose. Diclofenac sodium and ethyl cellulose in different proportions were processed by microencapsulation based on phase separation technique to formulate microcapsules. The prepared microcapsules were then compressed into tablets to obtain controlled release oral formulations. In-vitro evaluation was performed by dissolution test of each preparation was conducted in 900 ml of phosphate buffer solution of pH 7.2 maintained at 37 ± 0.5 °C and stirred at 50 rpm. At predetermined time intervals (0, 0.5, 1.0, 1.5, 2, 3, 4, 6, 8, 10, 12, 16, 20 and 24 hrs). The drug concentration in the collected samples was determined by UV spectrophotometer at 276 nm. The physical characteristics of diclofenac sodium microcapsules were according to accepted range. These were off-white, free flowing and spherical in shape. The release profile of diclofenac sodium from microcapsules was found to be directly proportional to the proportion of ethylcellulose and coat thickness. The in-vitro release pattern showed that with ratio of 1:1 and 1:2 (drug: polymer), the percentage release of drug at first hour was 16.91 and 11.52 %, respectively as compared to 1:3 which is only 6.87 % with in this time. The release mechanism followed higuchi model for its release pattern. Tablet Formulation (F2) of present study was found comparable in release profile the marketed brand Phlogin-SR, microcapsules showed an extended release beyond 24 h. Further, a good correlation was found between drug release and proportion of ethylcellulose in the microcapsules. Microencapsulation based on coacervation found as good technique to control release of diclofenac sodium for making the controlled release formulations.

Features of the Immune Response in Mice were Immunized with Polio Vaccine in Combination with Chitosan Preparations as Adjuvants

The study of cytokine expression in mice under the influence of inactivated poliovirus and Imovaks polio vaccine in combination with derivatives of chitosan shows various kinds of processes. There is a significant increase in IL-12 in the serum of immunized animals, which should stimulate the production of IFN-γ NK-cells and T-cells and polarize the immune response to Th1 type. Thus, the derivatives of chitosan can promote cell component of the immune response, providing a full antiviral immunity.

Preparation and Antibacterial Properties of Ag+-Exchanged Tobermorite-Chitosan Films

Silver-exchanged zeolites and clays are used in polymer composites to confer broad-spectrum antimicrobial properties on a range of functional materials. Tobermorite is a layer lattice mineral whose potential as a carrier for Ag+ ions in antibacterial composites has not yet been investigated. Accordingly, in this study, synthetic tobermorite was ion-exchanged with 10 wt% silver ions and the resulting material was incorporated into a composite film with chitosan. Chitosan is a biocompatible, biodegradable derivative of chitin, a polysaccharide obtained from the shells of crustaceans. The solvent-cast Ag+-exchanged tobermorite-chitosan films were found to exhibit antimicrobial action against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa.

Study on the Atomic-Oxygen-Protection Film Preparation of Organic Silicon and Its Properties

Materials used on exterior spacecraft surfaces are subjected to many environmental threats which can cause degradation, atomic oxygen is one of the most threats. We prepared organic silicon atomic-oxygen-protection film using method of polymerization. This paper presented the effects on the film structure and its durability of the preparation processing, and analyzed the polymerization theory, the film structure and composition of the film. At last, we tested the film in our ground based atomic oxygen simulator, and indicated that the film worked well.

Effect of Transplant Preparation Method on Yield and Agronomic Traits of True Potato Seed (TPS) Progenies in Sahneh Region

To study the effect of suitable methods for propagation of True Potato Seed (TPS) progenies, transplant and selection of the best progenies, a factorial experiment base on a randomized complete block design was carried out in the research field of Sahneh region, Kermanshah, Iran during 2009-2010. Five selective progenies from CIP (International Potato Center) including CIP.994013, CIP.994002, CIP.994014, CIP.888006, and CIP.994001 and two transplant preparation methods (Paper pot preparation for mechanical cultivation and preparation in transplant trays for manual cultivation) were studied in three replications. Results showed that different progenies had no significant effect on plant height (cm) and tuber yield (t ha-1), whereas had a significant effect on number of tubers per unit area (m2). There was significant difference between transplant preparation methods for plant height and tuber yield. The interaction effect of progenies and transplant preparation method was not significant for these traits. CIP.888006 progeny and paper pot preparation method produced the highest tuber yields. Also CIP.994002 and CIP.994014 progenies considered as the best progenies under paper pot preparation method due to high yields.

Preparation of Size Controlled Silver on Carbon from E-waste by Chemical and Electro-Kinetic Processes

Preparation of size controlled nano-particles of silver catalyst on carbon substrate from e-waste has been investigated. Chemical route was developed by extraction of the metals available in nitric acid followed by treatment with hydrofluoric acid. Silver metal particles deposited with an average size 4-10 nm. A stabilizer concentration of 10- 40 g/l was used. The average size of the prepared silver decreased with increase of the anode current density. Size uniformity of the silver nano-particles was improved distinctly at higher current density no more than 20mA... Grain size increased with EK time whereby aggregation of particles was observed after 6 h of reaction.. The chemical method involves adsorption of silver nitrate on the carbon substrate. Adsorbed silver ions were directly reduced to metal particles using hydrazine hydrate. Another alternative method is by treatment with ammonia followed by heating the carbon loaded-silver hydroxide at 980°C. The product was characterized with the help of XRD, XRF, ICP, SEM and TEM techniques.

Production of Novel Bioactive Yogurt Enriched with Olive Fruit Polyphenols

In the course of the present work, plain (nonencapsulated) and microencapsulated polyphenols were produced using olive mill wastewater (OMW) as raw material, in order to be used for enrichment of yogurt and dairy products. The OMW was first clarified by using membrane technology and subsequently the contained poly-phenols were isolated by adsorption-desorption technique using selective macro-porous resins and finally recovered in dry form after been processed by RO membrane technique followed by freeze drying. Moreover, the polyphenols were encapsulated in modified starch by freeze drying in order to mask the color and bitterness effect and improve their functionality. The two products were used successfully as additives in yogurt preparations and the produced products were acceptable by the consumers and presented with certain advantage to the plain yogurt. For the herein proposed production scheme a patent application was already submitted.

Physicochemical Properties of Microemulsions and their uses in Enhanced Oil Recovery

Use of microemulsion in enhanced oil recovery has become more attractive in recent years because of its high level of extraction efficiency. Experimental investigations have been made on characterization of microemulsions of oil-brinesurfactant/ cosurfactant system for its use in enhanced oil recovery (EOR). Sodium dodecyl sulfate, propan-1-ol and heptane were selected as surfactant, cosurfactant and oil respectively for preparation of microemulsion. The effects of salinity on the relative phase volumes and solubilization parameters have also been studied. As salinity changes from low to high value, phase transition takes place from Winsor I to Winsor II via Winsor III. Suitable microemulsion composition has been selected based on its stability and ability to reduce interfacial tension. A series of flooding experiments have been performed using the selected microemulsion. The flooding experiments were performed in a core flooding apparatus using uniform sand pack. The core holder was tightly packed with uniform sands (60-100 mesh) and saturated with brines of different salinities. It was flooded with the brine at 25 psig and the absolute permeability was calculated from the flow rate of the through sand pack. The sand pack was then flooded with the crude oil at 800 psig to irreducible water saturation. The initial water saturation was determined on the basis of mass balance. Waterflooding was conducted by placing the coreholder horizontally at a constant injection pressure at 200 pisg. After water flooding, when water-cut reached above 95%, around 0.5 pore volume (PV) of the above microemulsion slug was injected followed by chasing water. The experiments were repeated using different composition of microemulsion slug. The additional recoveries were calculated by material balance. Encouraging results with additional recovery more than 20% of original oil in place above the conventional water flooding have been observed.

Esterification of Free Fatty Acids in Crude Palm Oil with Sulfated Zirconia: Effect of Calcination Temperature

The production of biodiesel from crude palm oil with a homogeneous base catalyst is unlikely owing to considerable formation of soap. Free fatty acids (FFA) in crude palm oil need to be reduced, e.g. by esterification. This study investigated the activity of sulfated zirconia calcined at various temperatures for esterification of FFA in crude palm oil to biodiesel. It was found that under a proper reaction condition, sulfated zirconia well catalyzes esterification. FFA content can be reduced to an acceptable value for typical biodiesel production with a homogeneous base catalyst. Crystallinity and sulfate attachment of sulfated zirconia depend on calcination temperature during the catalyst preparation. Too low temperature of calcination gives amorphous sulfated zirconia which has low activity for esterification of FFA. In contrast, very high temperature of calcination removes sulfate group, consequently, conversion of FFA is reduced. The appropriate temperature range of calcination is 550-650 oC.