An Efficient Technique for Extracting Fuzzy Rulesfrom Neural Networks

Artificial neural networks (ANN) have the ability to model input-output relationships from processing raw data. This characteristic makes them invaluable in industry domains where such knowledge is scarce at best. In the recent decades, in order to overcome the black-box characteristic of ANNs, researchers have attempted to extract the knowledge embedded within ANNs in the form of rules that can be used in inference systems. This paper presents a new technique that is able to extract a small set of rules from a two-layer ANN. The extracted rules yield high classification accuracy when implemented within a fuzzy inference system. The technique targets industry domains that possess less complex problems for which no expert knowledge exists and for which a simpler solution is preferred to a complex one. The proposed technique is more efficient, simple, and applicable than most of the previously proposed techniques.

An Efficient Algorithm for Computing all Program Forward Static Slices

Program slicing is the task of finding all statements in a program that directly or indirectly influence the value of a variable occurrence. The set of statements that can affect the value of a variable at some point in a program is called a program backward slice. In several software engineering applications, such as program debugging and measuring program cohesion and parallelism, several slices are computed at different program points. The existing algorithms for computing program slices are introduced to compute a slice at a program point. In these algorithms, the program, or the model that represents the program, is traversed completely or partially once. To compute more than one slice, the same algorithm is applied for every point of interest in the program. Thus, the same program, or program representation, is traversed several times. In this paper, an algorithm is introduced to compute all forward static slices of a computer program by traversing the program representation graph once. Therefore, the introduced algorithm is useful for software engineering applications that require computing program slices at different points of a program. The program representation graph used in this paper is called Program Dependence Graph (PDG).

Infrared Face Recognition Using Distance Transforms

In this work we present an efficient approach for face recognition in the infrared spectrum. In the proposed approach physiological features are extracted from thermal images in order to build a unique thermal faceprint. Then, a distance transform is used to get an invariant representation for face recognition. The obtained physiological features are related to the distribution of blood vessels under the face skin. This blood network is unique to each individual and can be used in infrared face recognition. The obtained results are promising and show the effectiveness of the proposed scheme.

Bio-Inspired Generalized Global Shape Approach for Writer Identification

Writer identification is one of the areas in pattern recognition that attract many researchers to work in, particularly in forensic and biometric application, where the writing style can be used as biometric features for authenticating an identity. The challenging task in writer identification is the extraction of unique features, in which the individualistic of such handwriting styles can be adopted into bio-inspired generalized global shape for writer identification. In this paper, the feasibility of generalized global shape concept of complimentary binding in Artificial Immune System (AIS) for writer identification is explored. An experiment based on the proposed framework has been conducted to proof the validity and feasibility of the proposed approach for off-line writer identification.

Fast Wavelet Image Denoising Based on Local Variance and Edge Analysis

The approach based on the wavelet transform has been widely used for image denoising due to its multi-resolution nature, its ability to produce high levels of noise reduction and the low level of distortion introduced. However, by removing noise, high frequency components belonging to edges are also removed, which leads to blurring the signal features. This paper proposes a new method of image noise reduction based on local variance and edge analysis. The analysis is performed by dividing an image into 32 x 32 pixel blocks, and transforming the data into wavelet domain. Fast lifting wavelet spatial-frequency decomposition and reconstruction is developed with the advantages of being computationally efficient and boundary effects minimized. The adaptive thresholding by local variance estimation and edge strength measurement can effectively reduce image noise while preserve the features of the original image corresponding to the boundaries of the objects. Experimental results demonstrate that the method performs well for images contaminated by natural and artificial noise, and is suitable to be adapted for different class of images and type of noises. The proposed algorithm provides a potential solution with parallel computation for real time or embedded system application.

The Coverage of the Object-Oriented Framework Application Class-Based Test Cases

An application framework provides a reusable design and implementation for a family of software systems. Frameworks are introduced to reduce the cost of a product line (i.e., family of products that share the common features). Software testing is a time consuming and costly ongoing activity during the application software development process. Generating reusable test cases for the framework applications at the framework development stage, and providing and using the test cases to test part of the framework application whenever the framework is used reduces the application development time and cost considerably. Framework Interface Classes (FICs) are classes introduced by the framework hooks to be implemented at the application development stage. They can have reusable test cases generated at the framework development stage and provided with the framework to test the implementations of the FICs at the application development stage. In this paper, we conduct a case study using thirteen applications developed using three frameworks; one domain oriented and two application oriented. The results show that, in general, the percentage of the number of FICs in the applications developed using domain frameworks is, on average, greater than the percentage of the number of FICs in the applications developed using application frameworks. Consequently, the reduction of the application unit testing time using the reusable test cases generated for domain frameworks is, in general, greater than the reduction of the application unit testing time using the reusable test cases generated for application frameworks.

Harnessing Replication in Object Allocation

The design of distributed systems involves the partitioning of the system into components or partitions and the allocation of these components to physical nodes. Techniques have been proposed for both the partitioning and allocation process. However these techniques suffer from a number of limitations. For instance object replication has the potential to greatly improve the performance of an object orientated distributed system but can be difficult to use effectively and there are few techniques that support the developer in harnessing object replication. This paper presents a methodological technique that helps developers decide how objects should be allocated in order to improve performance in a distributed system that supports replication. The performance of the proposed technique is demonstrated and tested on an example system.

An Efficient Data Mining Approach on Compressed Transactions

In an era of knowledge explosion, the growth of data increases rapidly day by day. Since data storage is a limited resource, how to reduce the data space in the process becomes a challenge issue. Data compression provides a good solution which can lower the required space. Data mining has many useful applications in recent years because it can help users discover interesting knowledge in large databases. However, existing compression algorithms are not appropriate for data mining. In [1, 2], two different approaches were proposed to compress databases and then perform the data mining process. However, they all lack the ability to decompress the data to their original state and improve the data mining performance. In this research a new approach called Mining Merged Transactions with the Quantification Table (M2TQT) was proposed to solve these problems. M2TQT uses the relationship of transactions to merge related transactions and builds a quantification table to prune the candidate itemsets which are impossible to become frequent in order to improve the performance of mining association rules. The experiments show that M2TQT performs better than existing approaches.

A Self Supervised Bi-directional Neural Network (BDSONN) Architecture for Object Extraction Guided by Beta Activation Function and Adaptive Fuzzy Context Sensitive Thresholding

A multilayer self organizing neural neural network (MLSONN) architecture for binary object extraction, guided by a beta activation function and characterized by backpropagation of errors estimated from the linear indices of fuzziness of the network output states, is discussed. Since the MLSONN architecture is designed to operate in a single point fixed/uniform thresholding scenario, it does not take into cognizance the heterogeneity of image information in the extraction process. The performance of the MLSONN architecture with representative values of the threshold parameters of the beta activation function employed is also studied. A three layer bidirectional self organizing neural network (BDSONN) architecture comprising fully connected neurons, for the extraction of objects from a noisy background and capable of incorporating the underlying image context heterogeneity through variable and adaptive thresholding, is proposed in this article. The input layer of the network architecture represents the fuzzy membership information of the image scene to be extracted. The second layer (the intermediate layer) and the final layer (the output layer) of the network architecture deal with the self supervised object extraction task by bi-directional propagation of the network states. Each layer except the output layer is connected to the next layer following a neighborhood based topology. The output layer neurons are in turn, connected to the intermediate layer following similar topology, thus forming a counter-propagating architecture with the intermediate layer. The novelty of the proposed architecture is that the assignment/updating of the inter-layer connection weights are done using the relative fuzzy membership values at the constituent neurons in the different network layers. Another interesting feature of the network lies in the fact that the processing capabilities of the intermediate and the output layer neurons are guided by a beta activation function, which uses image context sensitive adaptive thresholding arising out of the fuzzy cardinality estimates of the different network neighborhood fuzzy subsets, rather than resorting to fixed and single point thresholding. An application of the proposed architecture for object extraction is demonstrated using a synthetic and a real life image. The extraction efficiency of the proposed network architecture is evaluated by a proposed system transfer index characteristic of the network.

Construction of Intersection of Nondeterministic Finite Automata using Z Notation

Functionalities and control behavior are both primary requirements in design of a complex system. Automata theory plays an important role in modeling behavior of a system. Z is an ideal notation which is used for describing state space of a system and then defining operations over it. Consequently, an integration of automata and Z will be an effective tool for increasing modeling power for a complex system. Further, nondeterministic finite automata (NFA) may have different implementations and therefore it is needed to verify the transformation from diagrams to a code. If we describe formal specification of an NFA before implementing it, then confidence over transformation can be increased. In this paper, we have given a procedure for integrating NFA and Z. Complement of a special type of NFA is defined. Then union of two NFAs is formalized after defining their complements. Finally, formal construction of intersection of NFAs is described. The specification of this relationship is analyzed and validated using Z/EVES tool.

Generating State-Based Testing Models for Object-Oriented Framework Interface Classes

An application framework provides a reusable design and implementation for a family of software systems. Application developers extend the framework to build their particular applications using hooks. Hooks are the places identified to show how to use and customize the framework. Hooks define the Framework Interface Classes (FICs) and the specifications of their methods. As part of the development life cycle, it is required to test the implementations of the FICs. Building a testing model to express the behavior of a class is an essential step for the generation of the class-based test cases. The testing model has to be consistent with the specifications provided for the hooks. State-based models consisting of states and transitions are testing models well suited to objectoriented software. Typically, hand-construction of a state-based model of a class behavior is expensive, error-prone, and may result in constructing an inconsistent model with the specifications of the class methods, which misleads verification results. In this paper, a technique is introduced to automatically synthesize a state-based testing model for FICs using the specifications provided for the hooks. A tool that supports the proposed technique is introduced.

MIBiClus: Mutual Information based Biclustering Algorithm

Most of the biclustering/projected clustering algorithms are based either on the Euclidean distance or correlation coefficient which capture only linear relationships. However, in many applications, like gene expression data and word-document data, non linear relationships may exist between the objects. Mutual Information between two variables provides a more general criterion to investigate dependencies amongst variables. In this paper, we improve upon our previous algorithm that uses mutual information for biclustering in terms of computation time and also the type of clusters identified. The algorithm is able to find biclusters with mixed relationships and is faster than the previous one. To the best of our knowledge, none of the other existing algorithms for biclustering have used mutual information as a similarity measure. We present the experimental results on synthetic data as well as on the yeast expression data. Biclusters on the yeast data were found to be biologically and statistically significant using GO Tool Box and FuncAssociate.

Generating Class-Based Test Cases for Interface Classes of Object-Oriented Black Box Frameworks

An application framework provides a reusable design and implementation for a family of software systems. Application developers extend the framework to build their particular applications using hooks. Hooks are the places identified to show how to use and customize the framework. Hooks define the Framework Interface Classes (FICs) and their possible specifications, which helps in building reusable test cases for the implementations of these classes. This paper introduces a novel technique called all paths-state to generate state-based test cases to test the FICs at class level. The technique is experimentally evaluated. The empirical evaluation shows that all paths-state technique produces test cases with a high degree of coverage for the specifications of the implemented FICs comparing to test cases generated using round-trip path and all-transition techniques.

A New IT-Convergence Service Design Framework

In many countries, digital city or ubiquitous city (u-City) projects have been initiated to provide digitalized economic environments to cities. Recently in Korea, Kangwon Province has started the u-Kangwon project to boost local economy with digitalized tourism services. We analyze the limitations of the ubiquitous IT approach through the u-Kangwon case. We have found that travelers are more interested in quality over speed in access of information. For improved service quality, we are looking to develop an IT-convergence service design framework (ISDF). The ISDF is based on the service engineering technique and composed of three parts: Service Design, Service Simulation, and the Service Platform.

A Hybrid Neural Network and Traditional Approach for Forecasting Lumpy Demand

Accurate demand forecasting is one of the most key issues in inventory management of spare parts. The problem of modeling future consumption becomes especially difficult for lumpy patterns, which characterized by intervals in which there is no demand and, periods with actual demand occurrences with large variation in demand levels. However, many of the forecasting methods may perform poorly when demand for an item is lumpy. In this study based on the characteristic of lumpy demand patterns of spare parts a hybrid forecasting approach has been developed, which use a multi-layered perceptron neural network and a traditional recursive method for forecasting future demands. In the described approach the multi-layered perceptron are adapted to forecast occurrences of non-zero demands, and then a conventional recursive method is used to estimate the quantity of non-zero demands. In order to evaluate the performance of the proposed approach, their forecasts were compared to those obtained by using Syntetos & Boylan approximation, recently employed multi-layered perceptron neural network, generalized regression neural network and elman recurrent neural network in this area. The models were applied to forecast future demand of spare parts of Arak Petrochemical Company in Iran, using 30 types of real data sets. The results indicate that the forecasts obtained by using our proposed mode are superior to those obtained by using other methods.

Representation of Coloured Petri Net in Abductive Logic Programming (CPN-LP) and Its Application in Modeling an Intelligent Agent

Coloured Petri net (CPN) has been widely adopted in various areas in Computer Science, including protocol specification, performance evaluation, distributed systems and coordination in multi-agent systems. It provides a graphical representation of a system and has a strong mathematical foundation for proving various properties. This paper proposes a novel representation of a coloured Petri net using an extension of logic programming called abductive logic programming (ALP), which is purely based on classical logic. Under such a representation, an implementation of a CPN could be directly obtained, in which every inference step could be treated as a kind of equivalence preserved transformation. We would describe how to implement a CPN under such a representation using common meta-programming techniques in Prolog. We call our framework CPN-LP and illustrate its applications in modeling an intelligent agent.

Memory Leak Detection in Distributed System

Due to memory leaks, often-valuable system memory gets wasted and denied for other processes thereby affecting the computational performance. If an application-s memory usage exceeds virtual memory size, it can leads to system crash. Current memory leak detection techniques for clusters are reactive and display the memory leak information after the execution of the process (they detect memory leak only after it occur). This paper presents a Dynamic Memory Monitoring Agent (DMMA) technique. DMMA framework is a dynamic memory leak detection, that detects the memory leak while application is in execution phase, when memory leak in any process in the cluster is identified by DMMA it gives information to the end users to enable them to take corrective actions and also DMMA submit the affected process to healthy node in the system. Thus provides reliable service to the user. DMMA maintains information about memory consumption of executing processes and based on this information and critical states, DMMA can improve reliability and efficaciousness of cluster computing.

A General Model for Acquiring Knowledge

In this paper, based on the work in [1], we further give a general model for acquiring knowledge, which first focuses on the research of how and when things involved in problems are made then describes the goals, the energy and the time to give an optimum model to decide how many related things are supposed to be involved in. Finally, we acquire knowledge from this model in which there are the attributes, actions and connections of the things involved at the time when they are born and the time in their life. This model not only improves AI theories, but also surely brings the effectiveness and accuracy for AI system because systems are given more knowledge when reasoning or computing is used to bring about results.

Enhancement of Stereo Video Pairs Using SDNs To Aid In 3D Reconstruction

This paper presents the results of enhancing images from a left and right stereo pair in order to increase the resolution of a 3D representation of a scene generated from that same pair. A new neural network structure known as a Self Delaying Dynamic Network (SDN) has been used to perform the enhancement. The advantage of SDNs over existing techniques such as bicubic interpolation is their ability to cope with motion and noise effects. SDNs are used to generate two high resolution images, one based on frames taken from the left view of the subject, and one based on the frames from the right. This new high resolution stereo pair is then processed by a disparity map generator. The disparity map generated is compared to two other disparity maps generated from the same scene. The first is a map generated from an original high resolution stereo pair and the second is a map generated using a stereo pair which has been enhanced using bicubic interpolation. The maps generated using the SDN enhanced pairs match more closely the target maps. The addition of extra noise into the input images is less problematic for the SDN system which is still able to out perform bicubic interpolation.

A 3D Virtual Navigation System Integrating User Positioning and Pre-Download Mechanism

This paper takes the actual scene of Aletheia University campus – the Class 2 national monument, the first educational institute in northern Taiwan as an example, to present a 3D virtual navigation system which supports user positioning and pre-download mechanism. The proposed system was designed based on the principle of Voronoi Diagra) to divide the virtual scenes and its multimedia information, which combining outdoor GPS positioning and the indoor RFID location detecting function. When users carry mobile equipments such as notebook computer, UMPC, EeePC...etc., walking around the actual scenes of indoor and outdoor areas of campus, this system can automatically detect the moving path of users and pre-download the needed data so that users will have a smooth and seamless navigation without waiting.