Using Genetic Algorithm for Distributed Generation Allocation to Reduce Losses and Improve Voltage Profile

This paper presents a method for the optimal allocation of Distributed generation in distribution systems. In this paper, our aim would be optimal distributed generation allocation for voltage profile improvement and loss reduction in distribution network. Genetic Algorithm (GA) was used as the solving tool, which referring two determined aim; the problem is defined and objective function is introduced. Considering to fitness values sensitivity in genetic algorithm process, there is needed to apply load flow for decision-making. Load flow algorithm is combined appropriately with GA, till access to acceptable results of this operation. We used MATPOWER package for load flow algorithm and composed it with our Genetic Algorithm. The suggested method is programmed under MATLAB software and applied ETAP software for evaluating of results correctness. It was implemented on part of Tehran electricity distributing grid. The resulting operation of this method on some testing system is illuminated improvement of voltage profile and loss reduction indexes.

Concrete Gravity Dams and Traveling Wave Effect along Reservoir Bottom

In the present article, effect of non-uniform excitation of reservoir bottom on nonlinear response of concrete gravity dams is considered. Anisotropic damage mechanics approach is used to model nonlinear behavior of mass concrete in 2D space. The tallest monolith of Pine Flat dam is selected as a case study. The horizontal and vertical components of 1967 Koyna earthquake is used to excite the system. It is found that crest response and stresses within the dam body decrease significantly when the reservoir is excited nonuniformly. In addition, the crack profiles within the dam body and in vicinity of the neck decreases.

Best Starting Pitcher of the Chinese Professional Baseball League in 2009

Baseball is unique among other sports in Taiwan. Baseball has become a “symbol of the Taiwanese spirit and Taiwan-s national sport". Taiwan-s first professional sports league, the Chinese Professional Baseball League (CPBL), was established in 1989. Starters pitch many more innings over the course of a season and for a century teams have made all their best pitchers starters. In this study, we attempt to determine the on-field performance these pitchers and which won the most CPBL games in 2009. We utilize the discriminate analysis approach to solve the problem, examining winning pitchers and their statistics, to reliably find the best starting pitcher. The data employed in this paper include innings pitched (IP), earned runs allowed (ERA) and walks plus hits per inning pitched (WPHIP) provided by the official website of the CPBL. The results show that Aaron Rakers was the best starting pitcher of the CPBL. The top 10 CPBL starting pitchers won 14 games to 8 games in the 2009 season. Though Fisher Discriminant Analysis, predicted to top 10 CPBL starting pitchers probably won 20 games to 9 games, more 1 game to 7 games in actually counts in 2009 season.

Sustainability: An Ethical Approach Towards Project Business Success

For any country the project management has been a vital part for its development. The highly competitive business world has created tremendous pressure on the project managers to achieve success. The pressure is derived from survival and profit building in business organizations which compels the project managers to pursue unethical practices. As a result unethical activities in business projects can be found easily where situations or issues arise due to dubious business practice, high corruption, or absolute violation of the law. The recent spur on Commonwealth games to be organized in New Delhi indicates towards the same. It has been seen that the project managers mainly focus on cost, time, and quality rather than social impact and long term effects of the project. Surprisingly the literature as well as the practitioner-s perspective also does not identify the role of ethics in project success. This paper identifies ethics as the fourth most important dimension in the project based organizations. The paper predicts that the approach of considering ethics will result in sustainability of the project. It will increase satisfaction and loyalty of the customers as well as create harmony, trust, brotherhood, values and morality among the team members. This paper is conceptual in nature as inadequate literature exists linking the project success with an ethical approach.

PTH Moment Exponential Stability of Stochastic Recurrent Neural Networks with Distributed Delays

In this paper, the issue of pth moment exponential stability of stochastic recurrent neural network with distributed time delays is investigated. By using the method of variation parameters, inequality techniques, and stochastic analysis, some sufficient conditions ensuring pth moment exponential stability are obtained. The method used in this paper does not resort to any Lyapunov function, and the results derived in this paper generalize some earlier criteria reported in the literature. One numerical example is given to illustrate the main results.

A Unified Framework for a Robust Conflict-Free Robot Navigation

Many environment specific methods and systems for Robot Navigation exist. However vast strides in the evolution of navigation technologies and system techniques create the need for a general unified framework that is scalable, modular and dynamic. In this paper a Unified Framework for a Robust Conflict-free Robot Navigation System that can be used for either a structured or unstructured and indoor or outdoor environments has been proposed. The fundamental design aspects and implementation issues encountered during the development of the module are discussed. The results of the deployment of three major peripheral modules of the framework namely the GSM based communication module, GIS Module and GPS module are reported in this paper.

Modelling and Analyzing a Hospital Procedureusing a Petri-Net Approach

Hierarchical high-level PNs (HHPNs) with time versions are a useful tool to model systems in a variety of application domains, ranging from logistics to complex workflows. This paper addresses an application domain which is receiving more and more attention: procedure that arranges the final inpatient charge in payment-s office and their management. We shall prove that Petri net based analysis is able to improve the delays during the procedure, in order that inpatient charges could be more reliable and on time.

Integrating Agents and Computational Intelligence Techniques in E-learning Environments

In this contribution a newly developed elearning environment is presented, which incorporates Intelligent Agents and Computational Intelligence Techniques. The new e-learning environment is constituted by three parts, the E-learning platform Front-End, the Student Questioner Reasoning and the Student Model Agent. These parts are distributed geographically in dispersed computer servers, with main focus on the design and development of these subsystems through the use of new and emerging technologies. These parts are interconnected in an interoperable way, using web services for the integration of the subsystems, in order to enhance the user modelling procedure and achieve the goals of the learning process.

Automotive ECU Design with Functional Safety for Electro-Mechanical Actuator Systems

In this paper, we propose a hardware and software design method for automotive Electronic Control Units (ECU) considering the functional safety. The proposed ECU is considered for the application to Electro-Mechanical Actuator systems and the validity of the design method is shown by the application to the Electro-Mechanical Brake (EMB) control system which is used as a brake actuator in Brake-By-Wire (BBW) systems. The importance of a functional safety-based design approach to EMB ECU design has been emphasized because of its safety-critical functions, which are executed with the aid of many electric actuators, sensors, and application software. Based on hazard analysis and risk assessment according to ISO26262, the EMB system should be ASIL-D-compliant, the highest ASIL level. To this end, an external signature watchdog and an Infineon 32-bit microcontroller TriCore are used to reduce risks considering common-cause hardware failure. Moreover, a software design method is introduced for implementing functional safety-oriented monitoring functions based on an asymmetric dual core architecture considering redundancy and diversity. The validity of the proposed ECU design approach is verified by using the EMB Hardware-In-the-Loop (HILS) system, which consists of the EMB assembly, actuator ECU, a host PC, and a few debugging devices. Furthermore, it is shown that the existing sensor fault tolerant control system can be used more effectively for mitigating the effects of hardware and software faults by applying the proposed ECU design method.

Low Temperature Ethanol Gas Sensor based on SnO2/MWNTs Nanocomposite

A composite made of plasma functionalized multiwall carbon nanotubes (MWNTs) coated with SnO2 was synthesized by sonochemical precipitation method. Thick layer of this nanocomposite material was used as ethanol sensor at low temperatures. The composite sensitivity for ethanol has increased by a factor of 2 at room temperature and by a factor of 13 at 250°C in comparison to that of pure SnO2. SEM image of nanocomposite material showed MWNTs were embedded in SnO2 matrix and also a higher surface area was observed in the presence of functionalized MWNTs. Greatly improved sensitivity of the composite material to ethanol can be attributed to new gas accessing passes through MWNTs and higher specific surface area.

The Impact of Recommendation Sources on Online Purchase Intentions: The Moderating Effects of Gender and Perceived Risk

This study examines the issue of recommendation sources from the perspectives of gender and consumers- perceived risk, and validates a model for the antecedents of consumer online purchases. The method of obtaining quantitative data was that of the instrument of a survey questionnaire. Data were collected via questionnaires from 396 undergraduate students aged 18-24, and a multiple regression analysis was conducted to identify causal relationships. Empirical findings established the link between recommendation sources (word-of-mouth, advertising, and recommendation systems) and the likelihood of making online purchases and demonstrated the role of gender and perceived risk as moderators in this context. The results showed that the effects of word-of-mouth on online purchase intentions were stronger than those of advertising and recommendation systems. In addition, female consumers have less experience with online purchases, so they may be more likely than males to refer to recommendations during the decision-making process. The findings of the study will help marketers to address the recommendation factor which influences consumers- intention to purchase and to improve firm performances to meet consumer needs.

Applying Fuzzy Analytic Hierarchy Process for Evaluating Service Quality of Online Auction

This paper applies fuzzy AHP to evaluate the service quality of online auction. Service quality is a composition of various criteria. Among them many intangible attributes are difficult to measure. This characteristic introduces the obstacles for respondents on reply in the survey. So as to overcome this problem, we invite fuzzy set theory into the measurement of performance and use AHP in obtaining criteria. We found the most concerned dimension of service quality is Transaction Safety Mechanism and the least is Charge Item. Other criteria such as information security, accuracy and information are too vital.

Post Occupancy Life Cycle Analysis of a Green Building Energy Consumption at the University of Western Ontario in London - Canada

The CMLP building was developed to be a model for sustainability with strategies to reduce water, energy and pollution, and to provide a healthy environment for the building occupants. The aim of this paper is to investigate the environmental effects of energy used by this building. A LCA (life cycle analysis) was led to measure the real environmental effects produced by the use of energy. The impact categories most affected by the energy use were found to be the human health effects, as well as ecotoxicity. Natural gas extraction, uranium milling for nuclear energy production, and the blasting for mining and infrastructure construction are the processes contributing the most to emissions in the human health effect. Data comparing LCA results of CMLP building with a conventional building results showed that energy used by the CMLP building has less damage for the environment and human health than a conventional building.

Evaluation of Stiffness and Damping Coefficients of Multiple Axial Groove Water Lubricated Bearing Using Computational Fluid Dynamics

This research details a Computational Fluid Dynamics (CFD) approach to model fluid flow in a journal bearing with 8 equispaced semi-circular axial grooves. Water is used as the lubricant and is fed from one end of the bearing to the other, under pressure. The geometry of the bearing is modeled using a commercially available modeling software GAMBIT and the flow analysis is performed using a dedicated CFD analysis software FLUENT. The pressure distribution in the bearing clearance is obtained from FLUENT for various whirl ratios and is used to calculate the hydrodynamic force components in the radial and tangential direction of the bearing. These values along with the various whirl speeds can be used to do a regression analysis to determine the stiffness and damping coefficients. The values obtained are then compared with the stiffness and damping coefficients of a 3 Axial groove water lubricated journal bearing and those obtained from a FORTRAN code for a similar bearing.

VISUAL JESS: AN Expandable Visual Generator of Oriented Object Expert systems

The utility of expert system generators has been widely recognized in many applications. Several generators based on concept of the paradigm object, have been recently proposed. The generator of oriented object expert system (GSEOO) offers languages that are often complex and difficult to use. We propose in this paper an extension of the expert system generator, JESS, which permits a friendly use of this expert system. The new tool, called VISUAL JESS, bring two main improvements to JESS. The first improvement concerns the easiness of its utilization while giving back transparency to the syntax and semantic aspects of the JESS programming language. The second improvement permits an easy access and modification of the JESS knowledge basis. The implementation of VISUAL JESS is made so that it is extensible and portable.

Optimization of Fiber Rich Gluten-Free Cookie Formulation by Response Surface Methodology

Most of the commercial gluten free products are nutritionally inferior when compared to gluten containing counterparts as manufacturers most often use the refined flours and starches. So it is possible that people on gluten free diet have low intake of fibre content. The foxtail millet flour and copra meal are gluten free and have high fibre and protein contents. The formulation of fibre rich gluten free cookies was optimized by response surface methodology considering independent process variables as proportion of Foxtail millet (Setaria italica) flour in mixed flour, fat content and guar gum. The sugar, sodium chloride, sodium bicarbonates and water were added in fixed proportion as 60, 1.0, 0.4 and 20% of mixed flour weight, respectively. Optimum formulation obtained for maximum spread ratio, fibre content, surface L-value, overall acceptability and minimum breaking strength were 80% foxtail millet flour in mixed flour, 42.8 % fat content and 0.05% guar gum.

Modeling and Simulation of In-vessel Core Handling in PFBR Operator Training Simulator

Component handling system is one of the important sub systems of Prototype Fast Breeder Reactor (PFBR) used for fuel handling. Core handling system is again a sub system of component handling system. Core handling system consists of in-vessel and ex-vessel subassembly handling. In-vessel core handling involves transfer arm, large rotatable plug and small rotatable plug operations. Modeling and simulation of in-vessel core handling is a part of development of Prototype Fast Breeder Reactor Operator Training Simulator. This paper deals with simulation and modeling of operations of transfer arm, large rotatable plug and small rotatable plug needed for in-vessel core handling. Process modeling was developed in house using platform independent Cµ code with OpenGL (Open Graphics Library). The control logic models and virtual panel were modeled using simulation tool.

An Eulerian Numerical Method and its Application to Explosion Problems

The Eulerian numerical method is proposed to analyze the explosion in tunnel. Based on this method, an original software M-MMIC2D is developed by Cµ program language. With this software, the explosion problem in the tunnel with three expansion-chambers is numerically simulated, and the results are found to be in full agreement with the observed experimental data.

Using Genetic Programming to Evolve a Team of Data Classifiers

The purpose of this paper is to demonstrate the ability of a genetic programming (GP) algorithm to evolve a team of data classification models. The GP algorithm used in this work is “multigene" in nature, i.e. there are multiple tree structures (genes) that are used to represent team members. Each team member assigns a data sample to one of a fixed set of output classes. A majority vote, determined using the mode (highest occurrence) of classes predicted by the individual genes, is used to determine the final class prediction. The algorithm is tested on a binary classification problem. For the case study investigated, compact classification models are obtained with comparable accuracy to alternative approaches.

Design Parameters Selection and Optimization of Weld Zone Development in Resistance Spot Welding

This paper investigates the development of weld zone in Resistance Spot Welding (RSW) which focuses on weld nugget and Heat Affected Zone (HAZ). The effects of four factors namely weld current, weld time, electrode force and hold time were studied using a general 24 factorial design augmented by five centre points. The results of the analysis showed that all selected factors except hold time exhibit significant effect on weld nugget radius and HAZ size. Optimization of the welding parameters (weld current, weld time and electrode force) to normalize weld nugget and to minimize HAZ size was then conducted using Central Composite Design (CCD) in Response Surface Methodology (RSM) and the optimum parameters were determined. A regression model for radius of weld nugget and HAZ size was developed and its adequacy was evaluated. The experimental results obtained under optimum operating conditions were then compared with the predicted values and were found to agree satisfactorily with each other