Botswana and Nation-Building Theory

This paper argues nation-building theories that prioritize democratic governance best explain the successful postindependence development of Botswana. Three main competing schools of thought exist regarding the sequencing of policies that should occur to re-build weakened or failed states. The first posits that economic development should receive foremost attention, while democratization and a binding sense of nationalism can wait. A second group of experts identified constructing a sense of nationalism among a populace is necessary first, so that the state receives popular legitimacy and obedience that are prerequisites for development. Botswana, though, transitioned into a multi-party democracy and prosperous open economy due to the utilization of traditional democratic structures, enlightened and accountable leadership, and an educated technocratic civil service. With these political foundations already in place when the discovery of diamonds occurred, the resulting revenues were spent wisely on projects that grew the economy, improved basic living standards, and attracted foreign investment. Thus democratization preceded, and therefore provided an accountable basis for, economic development that might otherwise have been squandered by greedy and isolated elites to the detriment of the greater population. Botswana was one of the poorest nations in the world at the time of its independence in 1966, with little infrastructure, a dependence on apartheid South Africa for trade, and a largely subsistence economy. Over the next thirty years, though, its economy grew the fastest of any nation in the world. The transparent and judicious use of diamond returns is only a partial explanation, as the government also pursued economic diversification, mass education, and rural development in response to public needs. As nation-building has become a project undertaken by nations and multilateral agencies such as the United Nations and the North Atlantic Treaty Organization, Botswana may provide best practices that others should follow in attempting to reconstruct economically and politically unstable states.

Real Time Adaptive Obstacle Avoidance in Dynamic Environments with Different D-S

In this paper a real-time obstacle avoidance approach for both autonomous and non-autonomous dynamical systems (DS) is presented. In this approach the original dynamics of the controller which allow us to determine safety margin can be modulated. Different common types of DS increase the robot’s reactiveness in the face of uncertainty in the localization of the obstacle especially when robot moves very fast in changeable complex environments. The method is validated by simulation and influence of different autonomous and non-autonomous DS such as important characteristics of limit cycles and unstable DS. Furthermore, the position of different obstacles in complex environment is explained. Finally, the verification of avoidance trajectories is described through different parameters such as safety factor.

Adapting the Chemical Reaction Optimization Algorithm to the Printed Circuit Board Drilling Problem

Chemical Reaction Optimization (CRO) is an optimization metaheuristic inspired by the nature of chemical reactions as a natural process of transforming the substances from unstable to stable states. Starting with some unstable molecules with excessive energy, a sequence of interactions takes the set to a state of minimum energy. Researchers reported successful application of the algorithm in solving some engineering problems, like the quadratic assignment problem, with superior performance when compared with other optimization algorithms. We adapted this optimization algorithm to the Printed Circuit Board Drilling Problem (PCBDP) towards reducing the drilling time and hence improving the PCB manufacturing throughput. Although the PCBDP can be viewed as instance of the popular Traveling Salesman Problem (TSP), it has some characteristics that would require special attention to the transactions that explore the solution landscape. Experimental test results using the standard CROToolBox are not promising for practically sized problems, while it could find optimal solutions for artificial problems and small benchmarks as a proof of concept.

Stable Delta-Sigma Modulator with Signal Dependent Forward Path Gain for Industrial Applications

Higher order ΔΣ Modulator (DSM) is basically an unstable system. The approximate conditions for stability cannot be used for the design of a DSM for industrial applications where risk is involved. The existing second order, single stage, single bit, unity feedback gain , discrete DSM cannot be used for the normalized full range (-1 to +1) of an input signal since the DSM becomes unstable when the input signal is above ±0.55. The stability is also not guaranteed for input signals of amplitude less than ±0.55. In the present paper, the above mentioned second order DSM is modified with input signal dependent forward path gain. The proposed DSM is suitable for industrial applications where one needs the digital representation of the analog input signal, during each sampling period. The proposed DSM can operate almost for the full range of input signals (-0.95 to +0.95) without causing instability, assuming that the second integrator output should not exceed the circuit supply voltage, ±15 Volts.

Fiber Braggs Grating Sensor Based Instrumentation to Evaluate Postural Balance and Stability on an Unstable Platform

This paper describes a novel application of Fiber Braggs Grating (FBG) sensors in the assessment of human postural stability and balance on an unstable platform. In this work, FBG sensor Stability Analyzing Device (FBGSAD) is developed for measurement of plantar strain to assess the postural stability of subjects on unstable platforms during different stances in eyes open and eyes closed conditions on a rocker board. The studies are validated by comparing the Centre of Gravity (CG) variations measured on the lumbar vertebra of subjects using a commercial accelerometer. The results obtained from the developed FBGSAD depict qualitative similarities with the data recorded by commercial accelerometer. The advantage of the FBGSAD is that it measures simultaneously plantar strain distribution and postural stability of the subject along with its inherent benefits like non-requirement of energizing voltage to the sensor, electromagnetic immunity and simple design which suits its applicability in biomechanical applications. The developed FBGSAD can serve as a tool/yardstick to mitigate space motion sickness, identify individuals who are susceptible to falls and to qualify subjects for balance and stability, which are important factors in the selection of certain unique professionals such as aircraft pilots, astronauts, cosmonauts etc.

Identification of Conserved Domains and Motifs for GRF Gene Family

GRF, Growth regulating factor, genes encode a novel class of plant-specific transcription factors. The GRF proteins play a role in the regulation of cell numbers in young and growing tissues and may act as transcription activations in growth and development of plants. Identification of GRF genes and their expression are important in plants to performance of the growth and development of various organs. In this study, to better understanding the structural and functional differences of GRFs family, 45 GRF proteins sequences in A. thaliana, Z. mays, O. sativa, B. napus, B. rapa, H. vulgare and S. bicolor, have been collected and analyzed through bioinformatics data mining. As a result, in secondary structure of GRFs, the number of alpha helices was more than beta sheets and in all of them QLQ domains were completely in the biggest alpha helix. In all GRFs, QLQ and WRC domains were completely protected except in AtGRF9. These proteins have no trans-membrane domain and due to have nuclear localization signals act in nuclear and they are component of unstable proteins in the test tube.

Enhanced Traffic Light Detection Method Using Geometry Information

In this paper, we propose a method that allows faster and more accurate detection of traffic lights by a vision sensor during driving, DGPS is used to obtain physical location of a traffic light, extract from the image information of the vision sensor only the traffic light area at this location and ascertain if the sign is in operation and determine its form. This method can solve the problem in existing research where low visibility at night or reflection under bright light makes it difficult to recognize the form of traffic light, thus making driving unstable. We compared our success rate of traffic light recognition in day and night road environments. Compared to previous researches, it showed similar performance during the day but 50% improvement at night.

Fractional Order Feedback Control of a Ball and Beam System

In this paper, fractional order feedback control of a ball beam model is investigated. The ball beam model is a particular example of the double Integrator system having strongly nonlinear characteristics and unstable dynamics which make the control of such system a challenging task. Most of the work in fractional order control systems are in theoretical nature and controller design and its implementation in practice is very small. In this work, a successful attempt has been made to design a fractional order PIλDμcontroller for a benchmark laboratory ball and beam model. Better performance can be achieved using a fractional order PID controller and it is demonstrated through simulations results with a comparison to the classic PID controller.

Theorizing Women’s Political Leadership: Cross-National Comparison

Since women obtained the right to vote in 1893 for the first time in New Zealand, they have tried to participate actively into politics but still the world has a few women in political leadership. The article asks which factors might influence the appearance of women leadership in politics. The article investigates two factors such as political context, personal factors. Countries where economic development is stable and political democracy is consolidated have a tendency of appearance of women political leadership but in less developed and politically unstable countries, women politicians can be in power with their own reasons. For the personal factor, their feminist propensity is studied but there is no relationship between the appearance of women leaders and their feminist propensity.

Direct Transient Stability Assessment of Stressed Power Systems

This paper discusses the performance of critical trajectory method (CTrj) for power system transient stability analysis under various loading settings and heavy fault condition. The method obtains Controlling Unstable Equilibrium Point (CUEP) which is essential for estimation of power system stability margins. The CUEP is computed by applying the CTrjto the boundary controlling unstable equilibrium point (BCU) method. The Proposed method computes a trajectory on the stability boundary that starts from the exit point and reaches CUEP under certain assumptions. The robustness and effectiveness of the method are demonstrated via six power system models and five loading conditions. As benchmark is used conventional simulation method whereas the performance is compared with and BCU Shadowing method.

MOSFET Based ADC for Accurate Positioning of Control Valves in Industry

This paper presents MOSFET based analog to digital converter which is simple in design, has high resolution, and conversion rate better than dual slope ADC. It has no DAC which will limit the performance, no error in conversion, can operate for wide range of inputs and never become unstable. One of the industrial applications, where the proposed high resolution MOSFET ADC can be used is, for the positioning of control valves in a multi channel data acquisition and control system (DACS), using stepper motors as actuators of control valves. It is observed that in a DACS having ten control valves, 0.02% of positional accuracy of control valves can be achieved with the data update period of 250ms and with stepper motors of maximum pulse rate 20 Kpulses per sec. and minimum pulse width of 2.5 μsec. The reported accuracy so far by other authors is 0.2%, with update period of 255 ms and with 8 bit DAC. The accuracy in the proposed configuration is limited by the available precision stepper motor and not by the MOSFET based ADC.

Identification of an Unstable Nonlinear System: Quadrotor

In the following article we begin from a multi-parameter unstable nonlinear model of a Quadrotor. We design a control to stabilize and assure the attitude of the device, starting off a linearized system at the equilibrium point of the null angles of Euler (hover), which provides us a control with limited capacities at small angles of rotation of the vehicle in three dimensions. In order to clear this obstacle, we propose the identification of models in different angles by means of simulations and the design of a controller specifically implemented for the identification task, that in future works will allow the development of controllers according to fast and agile angles of Euler for Quadrotor.

Development and Optimization of Colon Targeted Drug Delivery System of Ayurvedic Churna Formulation Using Eudragit L100 and Ethyl Cellulose as Coating Material

The purpose of this study was to prepare time and pH dependent release tablets of Ayurvedic Churna formulation and evaluate their advantages as colon targeted drug delivery system. The Vidangadi Churna was selected for this study which contains Embelin and Gallic acid. Embelin is used in Helminthiasis as therapeutic agent. Embelin is insoluble in water and unstable in gastric environment so it was formulated in time and pH dependent tablets coated with combination of two polymers Eudragit L100 and ethyl cellulose. The 150mg of core tablet of dried extract and lactose were prepared by wet granulation method. The compression coating was used in the polymer concentration of 150mg for both the layer as upper and lower coating tablet was investigated. The results showed that no release was found in 0.1 N HCl and pH 6.8 phosphate buffers for initial 5 hours and about 98.97% of the drug was released in pH 7.4 phosphate buffer in total 17 Hours. The in vitro release profiles of drug from the formulation could be best expressed first order kinetics as highest linearity (r2= 0.9943). The results of the present study have demonstrated that the time and pH dependent tablets system is a promising vehicle for preventing rapid hydrolysis in gastric environment and improving oral bioavailability of Embelin and Gallic acid for treatment of Helminthiasis.

Reduction of Rotor-Bearing-Support Finite Element Model through Substructuring

Due to simplicity and low cost, rotordynamic system is often modeled by using lumped parameters. Recently, finite elements have been used to model rotordynamic system as it offers higher accuracy. However, it involves high degrees of freedom. In some applications such as control design, this requires higher cost. For this reason, various model reduction methods have been proposed. This work demonstrates the quality of model reduction of rotor-bearing-support system through substructuring. The quality of the model reduction is evaluated by comparing some first natural frequencies, modal damping ratio, critical speeds, and response of both the full system and the reduced system. The simulation shows that the substructuring is proven adequate to reduce finite element rotor model in the frequency range of interest as long as the number and the location of master nodes are determined appropriately. However, the reduction is less accurate in an unstable or nearly-unstable system.

Investigation of the Emulsifying Properties of Bambara Groundnut Flour and Starch

The current desire in food and industrial emulsification is the use of natural emulsifiers. Bambara groundnut flour (BGNF) and its starch (BGNS) will serve both emulsifying and nutritional purposes if found suitable. This current study was aimed at investigating the emulsifying properties of BGNF/BGNS. BGNS was extracted from the BGNF. Emulsions were prepared using a wide range of flour-oil-water and starch-oil-water composition as generated through the application of Response Surface (D-optimal) design. Prepared emulsions were investigated for stability to creaming/sedimentation (using the kinetic information from turbiscan) and flocculation/coalescence (by monitoring the droplet diameter growth using optical microscope) over 5 days. The most stable emulsions (one BGNF-stabilized and the other BGNS-stabilized) were determined. The optimal emulsifier/oil composition was 9g/39g for BGNF and 5g/30g for BGNS. The two emulsions had only 30% and 50% growth in oil droplet diameter respectively by day 5, compared to over 3000% in the unstable ones. The BGNF-stabilized emulsions were more stable than the BGNS-stabilized ones. Emulsions were successfully stabilized with BGNF and BGNS.

Numerical Investigation of Non-Newtonians Fluids Flows between Two Rotating Cylinders Using Lattice Boltzmann Method

A numerical investigation is performed for non Newtonian fluids flow between two concentric cylinders. The D2Q9 lattice Boltzmann model developed from the Bhatangar-Gross-Krook (LBGK) approximation is used to obtain the flow field for fluids obeying to the power-law model. The inner and outer cylinders rotate in the same and the opposite direction while the end walls are maintained at rest. The combined effects of the Reynolds number (Re) of the inner and outer cylinders, the radius ratio (η) as well as the power-law index (n) on the flow characteristics are analyzed for an annular space of a finite aspect ratio (Γ). Two flow modes are obtained: a primary mode (laminar stable regime) and a secondary mode (laminar unstable regime). The so obtained flow structures are different from one mode to another. The transition critical Reynolds number Rec from the primary to the secondary mode is analyzed for the co-courant and counter-courant flows. This critical value increases as n increases. The prediction of the swirling flow of non Newtonians fluids in axisymmetric geometries is shown in the present work.

Analysis of the Visual Preference of Patterns in Pedestrian Roads

The purpose of this study is to analyze the visual preference of patterns in pedestrian roads. In this study, animation was applied for the estimation of dynamic streetscape. Six patterns of pedestrian were selected in order to analyze the visual preference. The shapes are straight, s-curve, and zigzag. The ratio of building's height and road's width are 2:1 and 1:1. Twelve adjective pairs used in the field investigation were selected from adjectives which are used usually in the estimation of streetscape. They are interesting-boring, simple-complex, calm-noisy, open-enclosed, active-inactive, lightly-depressing, regular-irregular, unique-usual, rhythmic-not rhythmic, united-not united, stable-unstable, tidy-untidy. Dynamic streetscape must be considered important in pedestrian shopping mall and park because it will be an attraction. So, s-curve pedestrian road, which is the most beautiful as a result of this study, should be designed in this area. Also, the ratio of building's height and road's width along pedestrian road should be reduced.

Temporal Extension to OWL Ontologies

Ontologies play an important role in semantic web applications and are often developed by different groups and continues to evolve over time. The knowledge in ontologies changes very rapidly that make the applications outdated if they continue to use old versions or unstable if they jump to new versions. Temporal frames using frame versioning and slot versioning are used to take care of dynamic nature of the ontologies. The paper proposes new tags and restructured OWL format enabling the applications to work with the old or new version of ontologies. Gene Ontology, a very dynamic ontology, has been used as a case study to explain the OWL Ontology with Temporal Tags.

The System Identification and PID Lead-lag Control for Two Poles Unstable SOPDT Process by Improved Relay Method

This paper describes identification of the two poles unstable SOPDT process, especially with large time delay. A new modified relay feedback identification method for two poles unstable SOPDT process is proposed. Furthermore, for the two poles unstable SOPDT process, an additional Derivative controller is incorporated parallel with relay to relax the constraint on the ratio of delay to the unstable time constant, so that the exact model parameters of unstable processes can be identified. To cope with measurement noise in practice, a low pass filter is suggested to get denoised output signal toimprove the exactness of model parameter of unstable process. PID Lead-lag tuning formulas are derived for two poles unstable (SOPDT) processes based on IMC principle. Simulation example illustrates the effectiveness and the simplicity of the proposed identification and control method.