Cloning and Functional Characterization of Promoter Elements of the D Hordein Gene from the Barley (Hordeum vulgare L.) by Bioinformatic Tools

The low level of foreign genes expression in transgenic plants is a key factor that limits plant genetic engineering. Because of the critical regulatory activity of the promoters on gene transcription, they are studied extensively to improve the efficiency of the plant transgenic system. The strong constitutive promoters, such as CaMV 35S promoter and Ubiqutin 1 maize are usually used in plant biotechnology research. However the expression level of the foreign genes in all tissues is often undesirable. But using a strong seed-specific promoter to limit gene expression in the seed solves such problems. The purpose of this study is to isolate one of the seed specific promoters of Hordeum vulgare. So one of the common varieties of Hordeum vulgare in Iran was selected and their genomes extracted then the D-Hordein promoter amplified using the specific designed primers. Then the amplified fragment of the insert cloned in an appropriate vector and then transformed to E. coli. At last for the final admission of accuracy the cloned fragments sent for sequencing. Sequencing analysis showed that the cloned fragment DHPcontained motifs; like TATA box, CAAT-box, CCGTCC-box, AMYBOX1 and E-box etc., which constituted the seed-specific promoter activity. The results were compared with sequences existing in data banks. D-Hordein promoters of Alger has 99% similarity at 100 % coverage. The results also showed that D-Hordein promoter of barley and HMW promoter of wheat are too similar.

Effect of Various Pollen Sources to Ability Fruit Set and Quality in ‘Long Red B’ Wax Apple

By hand pollination was conducted to evaluated different pollen sources and their affects on fruit set and quality of wax apple. The following parameters were recorded: fruit set, seed set, fruit characteristics. Results showed that fruit set percentage with seed were significantly high in ‘Long Red B’ when ‘Black’, ‘Thyto’ were used as pollen parents. Pollen of ‘Black’, ‘Thyto’ resulted in high fruit weight, fruit diameter, fruit length, bigger flesh thickness, better total soluble solids as compared with other pollens. The observation of pollen-growth in vitro revealed that pollen germination at 15% sucrose concentration are required for optimum pollen germination with the high pollen germination were found in ‘Black’, ‘Thyto’. From the result, we concluded that ‘Black’, ‘Thyto’ were proved to be good pollinizers in ‘Long Red B’. Therefore, artificial cross-pollination using ‘Black’, ‘Thyto’ as pollinizers were strongly recommended for ‘Long Red B’ cultivar in wax apple orchard.

Toxic Effect of Sodium Nitrate on Germinating Seeds of Vigna radiata

Sodium nitrate has been used industrially in a number of work fields ranging from agriculture to food industry. Sodium nitrate and nitrite are associated with a higher risk of cancer in human beings. In present study, the effect of sodium nitrate on germinating seeds was studied. Two different sets of ungerminated Vigna radiata seeds were taken. In one set Vigna radiata seeds were soaked in distilled water for 4 hours and they were allowed to germinate in distilled water (Control) and 0.1 to 1% and 10% concentrations of sodium nitrate (NaNo3). In soaked seed set, on 2nd day radical developed in control and 0.1 to 1% concentrations of sodium nitrate. Seeds size was enlarged in 1% and 10% concentrations of sodium nitrate. On 3rd day in 0.1% sodium nitrate length of the radicle was 7.5cm with one leaf let and control sample showed 9cm with one leaflet. On 5th day in 0.1% sodium nitrate length of the radicle was 10 cm with one leaf let and control sample showed 11.5cm with one leaflet. No radicle developed in 1 and 10% NaNo3 concentrations. On 10th day all plants including control were dead. More number of mitotic cells was observed in apical root meristems of control germinating seeds and less mitotic cells were observed in 0.1% NaNo3 germinating seeds. But cells were elongated in 0.9%NaNo3 concentration and particles are deposited in the cells and no mitotic cells were observed. In other sets, dry seeds were allowed to germinate in Distilled water (control) and in 0.1 to 1% and 10% concentrations of sodium nitrate. In dry seed set, on 2nd day radicle developed from control set. In 0.1 to 1% concentrations of sodium nitration seed enlarged in size but but not allowed germination. But in 10% NaNo3 seeds coat colour was changed from dark green to brown. On 3rd day the radicle was developed in 0.1% concentration of NaNo3. No growth of radicle was observed in 0.3 to 10% concentrations of NaNo3 but plumule was observed in control plant. Seed coat color was changed from dark green to brown in color in 1% and 10% NaNo3. On 5th day in control seeds the radicle growth was 11cm and 0.1% NaNo3 concentration was 1.3 cm. On 10th day all plants including control were dead. More number of mitotic cells was observed in apical root meristems of control germinating seeds and less mitotic cells were observed in 0.1% NaNo3 germinating seeds. At higher concentrations of NaNo3 allowed seed germination in soaked seeds but produced radicle decay. In comparison to it, in dry seed set, germination of seeds observed only in 0.1% NaNo3 concentration. The inhibitory effect of NaNo3 on seed germination is due to reduction of water imbibition and mitotic activity.

Physical and Chemical Properties Analysis of Jatropha curcas Seed Oil for Industrial Applications

A study on the physicochemical properties of Jatropha curcas seed oil for industrial applications were carried out. Physicochemical properties of J. curcas seed oil (59.32% lipids) showed high content of LA (36.70%), iodine value (104.90 mg/g) and saponification value (203.36 mg/g). The present study shows that, J. curcas seed oil is rich in oleic and linoleic acids. The J. curcas seed oil with the highest amount of polyunsaturated fatty acids (linoleic acid) can find an application in surface coating industries and biolubricant base oil applications, whereas the high amount of monounsaturated fatty acid can find an application as a biodiesel feed stock. J. curcas seed oil contains major TAG of monounsaturated OLL, POL, SLL, PLL, OOL, OOO and POP followed by LLL. J. curcas seed oil can be classified as unsaturated oil with an unsaturated fat level of 80.42%. Hence the J. curcas seed oil has great potential for industrial applications such as in paint and surface coatings, production of biodiesel and biolubricant. Therefore, it is crucial to have more research on J. curcas seed oil in the future to explore its potential as a future industrial oilseed crop.

Recovering Taraxacum kok-saghyz Rodin. via Seed and Callus Culture

This experiment was performed to optimize the medium for tissue culture of Taraxacum kok-saghyz Rodin. Different tissue culture approaches such as shoot regeneration from seed, callus formation from leaf explants and plant regeneration from callus were investigated in this study. All the explants were cultured on MS basal medium supplemented with 20g/l sucrose, 7g/l agar and different plant growth regulators. Seeds of Taraxacum kok-saghyzwere cultured on media containing different levels of BA and 2,4-D (0.5, 1.0 and 3.0mg/L) to direct shoot regeneration study. Leaf explants were cultured in different combination of BA (at three levels: 0.5, 1.0 and 3.0mg/L) and zeatin (at two levels: 0.5 and 1.0mg/L) to examine callus formation. After the callus formation the formed calli were cultured on different combinations of BA and NAA for shoot regeneration. BA at three levels (0.5 and 1.0 and 3.0mg/L) and NAA at two levels (0.5 and 1.0mg/L) in all possible combinations were used for shoot regeneration from callus. The results showed that the treatment containing 1.0mg/L 2,4-D in combination with 1.0mg/L BA was found to be the best one for shoot regeneration from seeds. The treatment with 1.0mg/L BA in combination with 1.0mg/L zeatin were found to be suitable treatments for callus production from leaf explants, as well. Moreover, 0.5mg/L BA alone or in combination with 1.0mg/L NAA were found to be the best treatments for shoot regeneration from callus.

Evaluation of Sensory Attributes of Snack from Maize-Moringa Seed Flour Blends

Healthy snack (cookie) was produced from corn flour and moringa seed flour blends. The samples were mixed in various proportions and analysed for proximate composition and functional characteristics. The healthy snack (cookies) was evaluated for sensory parameters of Colour, Crispness, Taste, Aroma and Overall Acceptability. The proximate analysis of the flour obtained from different proportion showed that proximate composition increased with increase in substitution level of moringa seed flour especially with protein, fat and crude fibre. The protein contents of samples range from 1.75 to 6.58, fat from 0.60 to 6.80, while fibre from 0.85 to 2.06. There was no significance difference in the functional properties of the blend when compared with 100% corn flour. Sensory evaluation results shows a significant difference in Colour, Taste, Crispness, Aroma and Overall Acceptability of healthy snack (cookies) sample from different blends at 5% significance level.

Inheritance of Primary Yield Component Traits of Common Beans (Phaseolus vulgaris L.): Number of Seeds per Pod and 1000 Seed Weight in an 8X8 Diallel Cross Population

Thirty six genotypes (8 parents and 28 F1 diallel crosses) were grown in randomized complete block design during 2006 at Mandura, North western Ethiopia. The experiment was executed to study the inheritance of two primary yield component traits: number of seeds per pod and 1000 seed weight. Statistical significant difference was observed between genotypes, parents, and crosses for these traits. The mean square due to GCA was significant for the two traits. However, SCA mean square was significant only for number of seeds per pod. Thus both additive and non-additive types of gene actions were important in the inheritance of number of seeds per pod. Significant b1 component was obtained for this trait. The b2 and b3 components, however, were not significant, suggesting the absence of gene asymmetry. From Wr/Vr graph, inheritance of seeds per pod was governed by partial dominance with additive gene action.

A Carbon Footprint Analysis of Rapeseed Oil and Rapeseed Methyl Ester Produced in Romania as Fuels for Diesel Engines

Considering the increasing need of biofuels in Europe and the legislative requirements of the European Union it is needed to quantify the greenhouse gas emissions of biofuels life cycle. In this article a carbon footprint analysis to quantify these gases emitted during production and use of Romanian rapeseed oil (RO) and biodiesel from rapeseed oil (RME) was conducted. The functional unit was considered the LHV of diesel oil of 42.8 MJ·kg-1 corresponding to 1.15kg. of RO and 1.10 kg. of RME. When the 3 fuels were compared, the results show important benefits when using rapeseed oil or biodiesel instead of diesel. The most impacting stage in terms of GHG emissions is the use of the fuels. In this stage, rapeseed oil registers a total quantity of 3,229 kg CO2eq.·FU-1 and biodiesel register a total quantity of 3,088 kg CO2eq.·FU-1 while mineral diesel registers a total quantity of 3,156 kg CO2eq.·FU-1 emitted in the air. Taking into account that rape plant absorbed during growth stage the same quantity of CO2 as emitted into atmosphere during usage stage of the fuel, when compared the three fuels, rapeseed oil and biodiesel obtain obvious benefits against fossil diesel. Results show that by substituting diesel with RO a total quantity of 5,663 kg. CO2eq.·FU-1 would be saved while using biodiesel a total quantity of 5,570 kg. CO2eq.·FU-1 can be saved.

Statistical Optimization of Process Conditions for Disinfection of Water Using Defatted Moringa oleifera Seed Extract

In this study, statistical optimization design was used to study the optimum disinfection parameters using defatted crude Moringa oleifera seed extracts against Escherichia coli (E. coli) bacterial cells. The classical one-factor-at-a-time (OFAT) and response surface methodology (RSM) was used. The possible optimum range of dosage, contact time and mixing rate from the OFAT study were 25mg/l to 200mg/l, 30minutes to 240 minutes and 100rpm to 160rpm respectively. Analysis of variance (ANOVA) of the statistical optimization using faced centered central composite design showed that dosage, contact time and mixing rate were highly significant. The optimum disinfection range was 125mg/l, at contact time of 30 minutes with mixing rate of 120 rpm. 

Contribution of Root Respiration to Soil Respiration in Sugarcane Plantation in Thailand

The understanding on the contribution of root respiration to total soil respiration is still very limited, especially for sugarcane. In this study, trenching experiments in sugarcane plantations were conducted to separate and investigate soil respiration for this crop. The measurements were performed for the whole growing period of 344 days to quantify root respiration. The obtained monitoring data showed that the respiration rate is increasing with the age of the plant, accounting for up to 29% of the total soil respiration before harvesting. The root to soil respiration ratio increased rapidly during the young seedling stage, i.e. first five months, then declined and finally got stabilized during yield formation and ripening stages, respectively. In addition, the results from the measurements confirmed that soil respiration was positively correlated with soil moisture content.

Modeling Ecological Responses of Some Forage Legumes in Iran

Grasslands of Iran are encountered with a vast desertification and destruction. Some legumes are plants of forage importance with high palatability. Studied legumes in this project are Onobrychis, Medicago sativa (alfalfa) and Trifolium repens. Seeds were cultivated in research field of Kaboutarabad (33 km East of Isfahan, Iran) with an average 80 mm. annual rainfall. Plants were cultivated in a split plot design with 3 replicate and two water treatments (weekly irrigation, and under stress with same amount per 15 days interval). Water entrance to each plots were measured by Partial flow. This project lasted 20 weeks. Destructive samplings (1m2 each time) were done weekly. At each sampling plants were gathered and weighed separately for each vegetative parts. An Area Meter (Vista) was used to measure root surface and leaf area. Total shoot and root fresh and dry weight, leaf area index and soil coverage were evaluated too. Dry weight was achieved in 750c oven after 24 hours. Statgraphic and Harvard Graphic software were used to formulate and demonstrate the parameters curves due to time. Our results show that Trifolium repens has affected 60 % and Medicago sativa 18% by water stress. Onobrychis total fresh weight was reduced 45%. Dry weight or Biomass in alfalfa is not so affected by water shortage. This means that in alfalfa fields we can decrease the irrigation amount and have some how same amount of Biomass. Onobrychis show a drastic decrease in Biomass. The increases in total dry matter due to time in studied plants are formulated. For Trifolium repens if removal or cattle entrance to meadows do not occurred at perfect time, it will decrease the palatability and water content of the shoots. Water stress in a short period could develop the root system in Trifolium repens, but if it last more than this other ecological and soil factors will affect the growth of this plant. Low level of soil water is not so important for studied legume forges. But water shortage affect palatability and water content of aerial parts. Leaf area due to time in studied legumes is formulated. In fact leaf area is decreased by shortage in available water. Higher leaf area means higher forage and biomass production. Medicago and Onobrychis reach to the maximum leaf area sooner than Trifolium and are able to produce an optimum soil cover and inhibit the transpiration of soil water of meadows. Correlation of root surface to Total biomass in studied plants is formulated. Medicago under water stress show a 40% decrease in crown cover while at optimum condition this amount reach to 100%. In order to produce forage in areas without soil erosion Medicago is the best choice even with a shortage in water resources. It is tried to represent the growth simulation of three famous Forage Legumes. By growth simulation farmers and range managers could better decide to choose best plant adapted to water availability without designing different time and labor consuming field experiments.

Gastroprotective Activity of Swietenia Mahagoni Seed Extract on Ethanol-Induced Gastric Mucosal Injury in Rats

Swietenia mahagoni have been used in traditional medicine for treatment of different diseases. Present study was performed to evaluate anti-ulcerogenic activity of ethanol seed extract against ethanol induced gastric mucosal injury in rats. Six groups of rats were orally pre-treated respectively with carboxymethyl cellulose, omeprazole 20 mg/kg, 50, 100, 200 and 400 mg/kg plant extract one hour before oral administration of absolute ethanol to generate gastric mucosal injury. After additional hour, rats were sacrificed and ulcer areas of gastric walls were determined. Grossly, carboxymethyl cellulose group exhibited severe mucosal injury, whereas pre-treatment with plant extract exhibited significant protection of gastric mucosa. Histology, carboxymethyl cellulose group exhibited severe damage of gastric mucosa; edema and leucocytes infiltration of sub mucosa compared to plant extract which showed gastric protection. Acute toxicity study did not manifest any toxicological signs in rats. Conclusions, results suggest that S. mahagoni promotes ulcer protection as ascertained grossly and histologically.

Enzymatic Activity of Alfalfa in a Phenanthrene-contaminated Environment

This research was undertaken to study enzymatic activity in the shoots, roots, and rhizosphere of alfalfa (Medicago sativa L.) grown in quartz sand that was uncontaminated and contaminated with phenanthrene at concentrations of 10 and 100 mg kg-1. The higher concentration of phehanthrene had a distinct phytotoxic effect on alfalfa, inhibiting seed germination energy, plant survival, and biomass accumulation. The plant stress response to the environmental pollution was an increase in peroxidase activity. Peroxidases were the predominant enzymes in the alfalfa shoots and roots. The peroxidase profile in the shoots differed from that in the roots and had different isoenzyme numbers. 2,2'-Azinobis-(3-ethylbenzo-thiazoline-6-sulphonate) (ABTS) peroxidase was predominant in the shoots, and 2,7-diaminofluorene (2,2-DAF) peroxidase was predominant in the roots. Under the influence of phenanthrene, the activity of 2,7-DAF peroxidase increased in the shoots, and the activity of ABTS peroxidase increased in the roots. Alfalfa root peroxidases were the prevalent enzyme systems in the rhizosphere sand. Examination of the activity of alfalfa root peroxidase toward phenanthrene revealed the possibility of involvement of the plant enzyme in rhizosphere degradation of the PAH.

Human Elastin-derived Biomimetic Coating Surface to Support Cell Growth

A new sythetic gene coding for a Human Elastin-Like Polypeptide was constructed and expressed. The recombinant product was tested as coating agent to realize a surface suitable for cell growth. Coatings showed peculiar features and different human cell lines were seeded and cultured. All cell lines tested showed to adhere and proliferate on this substrate that has been shown also to exert a specific effect on cells, depending on cell type.

The Potential of Natural Waste (Corn Husk) for Production of Environmental Friendly Biodegradable Film for Seedling

The use of plastic materials in agriculture causes serious hazards to the environment. The introduction of biodegradable materials, which can be disposed directly into the soil can be one possible solution to this problem. In the present research results of experimental tests carried out on biodegradable film fabricated from natural waste (corn husk) are presented. The film was characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), thermal gravimetric analysis (TGA) and atomic force microscope (AFM) observation. The film is shown to be readily degraded within 7-9 months under controlled soil conditions, indicating a high biodegradability rate. The film fabricated was use to produce biodegradable pot (BioPot) for seedlings plantation. The introduction and the expanding use of biodegradable materials represent a really promising alternative for enhancing sustainable and environmentally friendly agricultural activities.

Performance and Emission Study of Linseed Oilas a Fuel for CI Engine

Increased energy demand and the concern about environment friendly technology, renewable bio-fuels are better alternative to petroleum products. In the present study linseed oil was used as alternative source for diesel engine fuel and the results were compared with baseline data of neat diesel. Performance parameters such as brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) and emissions parameters such as CO, unburned hydro carbon (UBHC), NOx, CO2 and exhaust temperature were compared. BTE of the engine was lower and BSFC was higher when the engine was fueled with Linseed oil compared to diesel fuel. Emission characteristics are better than diesel fuel. NOx formation by using linseed oil during the experiment was lower than diesel fuel. Linseed oil is non edible oil, so it can be used as an extender of diesel fuel energy source for small and medium energy needs.

Degradability Studies of Photodegradable Plastic Film

Polypropylene blended with natural oil and pigment additives has been studied. Different formulations for each compound were made into polybag used for cultivation of oil palm seedlings for strength and mechanical properties studies. One group of sample was exposed under normal sunlight to initiate degradation and another group of sample was placed under shaded area for five months. All samples were tested for tensile strength to determine the degradation effects. The tensile strength of directly exposed sunlight samples and shaded area showed up to 50% and 25% degradation respectively. However, similar reduction of Young’s modulus for all samples was found for both exposures. Structural investigations were done using FTIR to detect deformation. The natural additives that were used in the studies were all natural and environmental friendly

Improving Water Productivity of Chickpea by the Use of Deficit Irrigation with Treated Domestic Wastewater

An experiment was performed in the south of Morocco in order to evaluate the effect of deficit irrigation by treated wastewater on chickpea production. We applied six irrigation treatments on a local variety of chickpea by supplying alternatively 50 or 100% of ETm in a completely randomized design. We found a highly significant difference between treatments in terms of biomass production. Drought stress during the vegetative period showed highest yield with 6.5 t/ha which was more than the yield obtained for the control (4.9 t/ha). The optimal crop stage in which deficit irrigation can be applied is the vegetative growth stage, as the crop has a chance to develop its root system, to be able to cover the plant needs for water and nutrient supply during the rest of cycle, and non stress conditions during the flowering and seed filling stages allow the plant to optimize its photosynthesis and carbon translocation, therefore increase its productivity.

Objects Extraction by Cooperating Optical Flow, Edge Detection and Region Growing Procedures

The image segmentation method described in this paper has been developed as a pre-processing stage to be used in methodologies and tools for video/image indexing and retrieval by content. This method solves the problem of whole objects extraction from background and it produces images of single complete objects from videos or photos. The extracted images are used for calculating the object visual features necessary for both indexing and retrieval processes. The segmentation algorithm is based on the cooperation among an optical flow evaluation method, edge detection and region growing procedures. The optical flow estimator belongs to the class of differential methods. It permits to detect motions ranging from a fraction of a pixel to a few pixels per frame, achieving good results in presence of noise without the need of a filtering pre-processing stage and includes a specialised model for moving object detection. The first task of the presented method exploits the cues from motion analysis for moving areas detection. Objects and background are then refined using respectively edge detection and seeded region growing procedures. All the tasks are iteratively performed until objects and background are completely resolved. The method has been applied to a variety of indoor and outdoor scenes where objects of different type and shape are represented on variously textured background.

Higher Plants Ability to Assimilate Explosives

The ability of agricultural and decorative plants to absorb and detoxify TNT and RDX has been studied. All tested 8 plants, grown hydroponically, were able to absorb these explosives from water solutions: Alfalfa > Soybean > Chickpea> Chikling vetch >Ryegrass > Mung bean> China bean > Maize. Differently from TNT, RDX did not exhibit negative influence on seed germination and plant growth. Moreover, some plants, exposed to RDX containing solution were increased in their biomass by 20%. Study of the fate of absorbed [1-14ðí]-TNT revealed the label distribution in low and high-molecular mass compounds, both in roots and above ground parts of plants, prevailing in the later. Content of 14ðí in lowmolecular compounds in plant roots are much higher than in above ground parts. On the contrary, high-molecular compounds are more intensively labeled in aboveground parts of soybean. Most part (up to 70%) of metabolites of TNT, formed either by enzymatic reduction or oxidation, is found in high molecular insoluble conjugates. Activation of enzymes, responsible for reduction, oxidation and conjugation of TNT, such as nitroreductase, peroxidase, phenoloxidase and glutathione S-transferase has been demonstrated. Among these enzymes, only nitroreductase was shown to be induced in alfalfa, exposed to RDX. The increase in malate dehydrogenase activities in plants, exposed to both explosives, indicates intensification of Tricarboxylic Acid Cycle, that generates reduced equivalents of NAD(P)H, necessary for functioning of the nitroreductase. The hypothetic scheme of TNT metabolism in plants is proposed.