FEA for Transient Responses of an S-Shaped Force Transducer with a Viscoelastic Absorber Using a Nonlinear Complex Spring

To compute dynamic characteristics of nonlinear viscoelastic springs with elastic structures having huge degree-of-freedom, Yamaguchi proposed a new fast numerical method using finite element method [1]-[2]. In this method, restoring forces of the springs are expressed using power series of their elongation. In the expression, nonlinear hysteresis damping is introduced. In this expression, nonlinear complex spring constants are introduced. Finite element for the nonlinear spring having complex coefficients is expressed and is connected to the elastic structures modeled by linear solid finite element. Further, to save computational time, the discrete equations in physical coordinate are transformed into the nonlinear ordinary coupled equations using normal coordinate corresponding to linear natural modes. In this report, the proposed method is applied to simulation for impact responses of a viscoelastic shock absorber with an elastic structure (an S-shaped structure) by colliding with a concentrated mass. The concentrated mass has initial velocities and collides with the shock absorber. Accelerations of the elastic structure and the concentrated mass are measured using Levitation Mass Method proposed by Fujii [3]. The calculated accelerations from the proposed FEM, corresponds to the experimental ones. Moreover, using this method, we also investigate dynamic errors of the S-shaped force transducer due to elastic mode in the S-shaped structure.

Numerical Analysis of a Centrifugal Fan for Improved Performance using Splitter Vanes

The flow field in a centrifugal fan is highly complex with flow reversal taking place on the suction side of impeller and diffuser vanes. Generally performance of the centrifugal fan could be enhanced by judiciously introducing splitter vanes so as to improve the diffusion process. An extensive numerical whole field analysis on the effect of splitter vanes placed in discrete regions of suspected separation points is possible using CFD. This paper examines the effect of splitter vanes corresponding to various geometrical locations on the impeller and diffuser. The analysis shows that the splitter vanes located near the diffuser exit improves the static pressure recovery across the diffusing domain to a larger extent. Also it is found that splitter vanes located at the impeller trailing edge and diffuser leading edge at the mid-span of the circumferential distance between the blades show a marginal improvement in the static pressure recovery across the fan. However, splitters provided near to the suction side of the impeller trailing edge (25% of the circumferential gap between the impeller blades towards the suction side), adversely affect the static pressure recovery of the fan.

Particle Swarm Optimization Based Genetic Algorithm for Two-Stage Transportation Supply Chain

Supply chain consists of all stages involved, directly or indirectly, includes all functions involved in fulfilling a customer demand. In two stage transportation supply chain problem, transportation costs are of a significant proportion of final product costs. It is often crucial for successful decisions making approaches in two stage supply chain to explicit account for non-linear transportation costs. In this paper, deterministic demand and finite supply of products was considered. The optimized distribution level and the routing structure from the manufacturing plants to the distribution centres and to the end customers is determined using developed mathematical model and solved by proposed particle swarm optimization based genetic algorithm. Numerical analysis of the case study is carried out to validate the model.

System Identification and Performance Improvement to a Micro Gas Turbine Applying Biogas

In this study, the effects of biogas fuels on the performance of an annular micro gas turbine (MGT) were assessed experimentally and numerically. In the experiments, the proposed MGT system was operated successfully under each test condition; minimum composition to the fuel with the biogas was roughly 50% CH4 with 50% CO2. The power output was around 170W at 85,000 RPM as 90% CH4 with 10% CO2 was used and 70W at 65,000 RPM as 70% CH4 with 30% CO2 was used. When a critical limit of 60% CH4 was reached, the power output was extremely low. Furthermore, the theoretical Brayton cycle efficiency and electric efficiency of the MGT were calculated as 23% and 10%, respectively. Following the experiments, the measured data helped us identify the parameters of dynamic model in numerical simulation. Additionally, a numerical analysis of re-designed combustion chamber showed that the performance of MGT could be improved by raising the temperature at turbine inlet. This study presents a novel distributed power supply system that can utilize renewable biogas. The completed micro biogas power supply system is small, low cost, easy to maintain and suited to household use.

Numerical Study of Cyclic Behavior of Shallow Foundations on Sand Reinforced with Geogrid and Grid-Anchor

When the foundations of structures under cyclic loading with amplitudes less than their permissible load, the concern exists often for the amount of uniform and non-uniform settlement of such structures. Storage tank foundations with numerous filling and discharging and railways ballast course under repeating transportation loads are examples of such conditions. This paper deals with the effects of using the new generation of reinforcements, Grid-Anchor, for the purpose of reducing the permanent settlement of these foundations under the influence of different proportions of the ultimate load. Other items such as the type and the number of reinforcements as well as the number of loading cycles are studied numerically. Numerical models were made using the Plaxis3D Tunnel finite element code. The results show that by using gridanchor and increasing the number of their layers in the same proportion as that of the cyclic load being applied, the amount of permanent settlement decreases up to 42% relative to unreinforced condition depends on the number of reinforcement layers and percent of applied load and the number of loading cycles to reach a constant value of dimensionless settlement decreases up to 20% relative to unreinforced condition.

Numerical Analysis of the Performance of a Shrouded Vertical-Axis Water Turbine based on the NACA 0025 Blade Profile

This paper presents a numerical analysis of the performance of a five-bladed Darrieus vertical-axis water turbine, based on the NACA 0025 blade profile, for both bare and shrouded configurations. A complete campaign of 2-D simulations, performed for several values of tip speed ratio and based on RANS unsteady calculations, has been performed to obtain the rotor torque and power curves. Also the effect of a NACA-shaped central hydrofoil has been investigated, with the aim of evaluating the impact of a solid blockage on the performance of the shrouded rotor configuration. The beneficial effect of the shroud on rotor overall performances has clearly been evidenced, while the adoption of the central hydrofoil has proved to be detrimental, being the resulting flow slow down (due to the presence of the obstacle) much higher with respect to the flow acceleration (due to the solid blockage effect).

Effect of Endplate Shape on Performance and Stability of Wings-in Ground (WIG) Craft

Numerical analysis for the aerodynamic characteristics of the WIG (wing-in ground effect) craft with highly cambered and aspect ratio of one is performed to predict the ground effect for the case of with- and without- lower-extension endplate. The analysis is included varying angles of attack from 0 to10 deg. and ground clearances from 5% of chord to 50%. Due to the ground effect, the lift by rising in pressure on the lower surface is increased and the influence of wing-tip vortices is decreased. These two significant effects improve the lift-drag ratio. On the other hand, the endplate prevents the high-pressure air escaping from the air cushion at the wing tip and causes to increase the lift and lift-drag ratio further. It is found from the visualization of computation results that two wing-tip vortices are generated from each surface of the wing tip and their strength are weak and diminished rapidly. Irodov-s criteria are also evaluated to investigate the static height stability. The comparison of Irodov-s criteria shows that the endplate improves the deviation of the static height stability with respect to pitch angles and heights. As the results, the endplate can improve the aerodynamic characteristics and static height stability of wings in ground effect, simultaneously.

Footbridge Response on Single Pedestrian Induced Vibration Analysis

Many footbridges have natural frequencies that coincide with the dominant frequencies of the pedestrian-induced load and therefore they have a potential to suffer excessive vibrations under dynamic loads induced by pedestrians. Some of the design standards introduce load models for pedestrian loads applicable for simple structures. Load modeling for more complex structures, on the other hand, is most often left to the designer. The main focus of this paper is on the human induced forces transmitted to a footbridge and on the ways these loads can be modeled to be used in the dynamic design of footbridges. Also design criteria and load models proposed by widely used standards were introduced and a comparison was made. The dynamic analysis of the suspension bridge in Kolin in the Czech Republic was performed on detailed FEM model using the ANSYS program system. An attempt to model the load imposed by a single person and a crowd of pedestrians resulted in displacements and accelerations that are compared with serviceability criteria.

Dynamic Response of Strain Rate Dependent Glass/Epoxy Composite Beams Using Finite Difference Method

This paper deals with a numerical analysis of the transient response of composite beams with strain rate dependent mechanical properties by use of a finite difference method. The equations of motion based on Timoshenko beam theory are derived. The geometric nonlinearity effects are taken into account with von Kármán large deflection theory. The finite difference method in conjunction with Newmark average acceleration method is applied to solve the differential equations. A modified progressive damage model which accounts for strain rate effects is developed based on the material property degradation rules and modified Hashin-type failure criteria and added to the finite difference model. The components of the model are implemented into a computer code in Mathematica 6. Glass/epoxy laminated composite beams with constant and strain rate dependent mechanical properties under dynamic load are analyzed. Effects of strain rate on dynamic response of the beam for various stacking sequences, load and boundary conditions are investigated.

Finite Element Study of a DfD Beam-Column Connection

Design for Disassembly (DfD) aims to reuse the structural components instead of demolition followed by recycling of the demolition debris. This concept preserves the invested embodied energy of materials, thus reducing inputs of new embodied energy during materials reprocessing or remanufacturing. Both analytical and experimental research on a proposed DfD beam-column connection for use in residential apartments is currently investigated at the National University of Singapore in collaboration with the Housing and Development Board of Singapore. The present study reports on the results of a numerical analysis of the proposed connection utilizing finite element analysis. The numerical model was calibrated and validated by comparison against experimental results. Results of a parametric study will also be presented and discussed.

Modeling of Catalyst Deactivation in Catalytic Wet Air Oxidation of Phenol in Fixed Bed Three-Phase Reactor

Modeling and simulation of fixed bed three-phase catalytic reactors are considered for wet air catalytic oxidation of phenol to perform a comparative numerical analysis between tricklebed and packed-bubble column reactors. The modeling involves material balances both for the catalyst particle as well as for different fluid phases. Catalyst deactivation is also considered in a transient reactor model to investigate the effects of various parameters including reactor temperature on catalyst deactivation. The simulation results indicated that packed-bubble columns were slightly superior in performance than trickle beds. It was also found that reaction temperature was the most effective parameter in catalyst deactivation.

Numerical Analysis of Flow past Circular Cylinder with Triangular and Rectangular Wake Splitter

In the present work flow past circular cylinder and cylinder with rectangular and triangular wake splitter is studied to improve aerodynamic parameters. The Comparison of drag coefficient is tabulated for bare cylinder, cylinder with rectangular and triangular wake splitters. Flow past circular cylinder and cylinder with triangular and rectangular wake splitter is performed at Reynoldsnumber 5, 20, 40, 50,80, 100.An incompressible PISO finite volume code employing a non-staggered grid arrangement is used, a second order upwind scheme is used for convective terms. The time discretization is implicit and a Second order Crank-Nicholson scheme is employed. Length of wake splitter in both configurations is taken to be equal to diameter of cylinder. Wake length is found to be less with rectangular wake splitter when compared to bare cylinder and cylinder with triangular wake splitter. Coefficient of drag is found to be less for triangular wake splitter when compared to bare cylinder & cylinder with rectangular wake splitter.