Improved Technique of Non-viral Gene Delivery into Cancer Cells

Liposomal magnetofection is a simple, highly efficient technology for cell transfection, demonstrating better outcome than a number of other common gene delivery methods. However, aggregate complexes distribution over the cell surface is non-uniform due to the gradient of the permanent magnetic field. The aim of this study was to estimate the efficiency of liposomal magnetofection for prostate carcinoma PC3 cell line using newly designed device, “DynaFECTOR", ensuring magnetofection in a dynamic gradient magnetic field. Liposomal magnetofection in a dynamic gradient magnetic field demonstrated the highest transfection efficiency for PC3 cells – it increased for 21% in comparison with liposomal magnetofection and for 42% in comparison with lipofection alone. The optimal incubation time under dynamic magnetic field for PC3 cell line was 5 minutes and the optimal rotation frequency of magnets – 5 rpm. The new approach also revealed lower cytotoxic effect to cells than liposomal magnetofection.

Combining Gene and Chemo Therapy using Multifunctional Polymeric Micelles

Non-viral gene carriers composed of biodegradable polymers or lipids have been considered as a safer alternative for gene carriers over viral vectors. We have developed multi-functional nano-micelles for both drug and gene delivery application. Polyethyleneimine (PEI) was modified by grafting stearic acid (SA) and formulated to polymeric micelles (PEI-SA) with positive surface charge for gene and drug delivery. Our results showed that PEI-SA micelles provided high siRNA binding efficiency. In addition, siRNA delivered by PEI-SA carriers also demonstrated significantly high cellular uptake even in the presence of serum proteins. The post-transcriptional gene silencing efficiency was greatly improved by the polyplex formulated by 10k PEI-SA/siRNA. The amphiphilic structure of PEI-SA micelles provided advantages for multifunctional tasks; where the hydrophilic shell modified with cationic charges can electrostatically interact with DNA or siRNA, and the hydrophobic core can serve as payloads for hydrophobic drugs, making it a promising multifunctional vehicle for both genetic and chemotherapy application.