Operating Conditions Optimization of Steam Injection in Enhanced Oil Recovery Using Duelist Algorithm

Steam injection is the most suitable of Enhanced Oil Recovery (EOR) methods to recover high viscosity oil. This is due to the capabilities of steam to reduce oil viscosity and increase the sweep capability of oil from the injection well toward the production well. Oil operating conditions in production should be match well with the operating condition target at the bottom of the production well. It is influenced by oil properties and reservoir rock properties. Hence, the operating condition should be optimized. Optimization requires three components i.e., objective function, model, and optimization technique. In this paper, the objective function is to obtain the optimum operating condition at the production well. The model was built using Darcy equation and mass-energy balance. The optimization technique utilizes Duelist Algorithm due to the effectiveness of its algorithm to obtain the desirable optimization results at the optimum operating condition.

Analysis of Normal Penetration of Ogive -Nose Projectiles into Thin Metallic Plates

In this note, a theoretical model for analyzing of normal penetration of the ogive – nose projectile into metallic targets is presented .The failure is assumed to be asymmetry petalling and the analysis is performed by using the energy balance and work done .The work done consist of the work required for plastic deformation Wp, the work for transferring the matter to new position Wd and the work for bending of the petals Wb. In several studies, it has been shown that we can neglect the loss of energy by temperature. In this present study, in first, by assuming the crater formation after perforation, the value of work done is calculated during the normal penetration of conical projectiles into thin metallic targets. Then the value of residual velocity and ballistic limit of the projectile is predicated by using the energy balance. In final, theoretical and experimental results is compared.

Active Power Filtering Implementation Using Photovoltaic System with Reduced Energy Storage Capacitor

A novel three-phase active power filter (APF) circuit with photovoltaic (PV) system to improve the quality of service and to reduce the capacity of energy storage capacitor is presented. The energy balance concept and sampling technique were used to simplify the calculation algorithm for the required utility source current and to control the voltage of the energy storage capacitor. The feasibility was verified by using the Pspice simulations and experiments. When the APF mode was used during non-operational period, not only the utilization rate, power factor and power quality could be improved, but also the capacity of energy storage capacitor could sparing. As the results, the advantages of the APF circuit are simplicity of control circuits, low cost, and good transient response.

Mathematical Model of Smoking Time Temperature Effect on Ribbed Smoked Sheets Quality

The quality of Ribbed Smoked Sheets (RSS) primarily based on color, dryness, and the presence or absence of fungus and bubbles. This quality is strongly influenced by the drying and fumigation process namely smoking process. Smoking that is held in high temperature long time will result scorched dark brown sheets, whereas if the temperature is too low or slow drying rate would resulted in less mature sheets and growth of fungus. Therefore need to find the time and temperature for optimum quality of sheets. Enhance, unmonitored heat and mass transfer during smoking process lead to high losses of energy balance. This research aims to generate simple empirical mathematical model describing the effect of smoking time and temperature to RSS quality of color, water content, fungus and bubbles. The second goal of study was to analyze energy balance during smoking process. Experimental study was conducted by measuring temperature, residence time and quality parameters of 16 sheets sample in smoking rooms. Data for energy consumption balance such as mass of fuel wood, mass of sheets being smoked, construction temperature, ambient temperature and relative humidity were taken directly along the smoking process. It was found that mathematical model correlating smoking temperature and time with color is Color = -169 - 0.184 T4 - 0.193 T3 - 0.160 0.405 T1 + T2 + 0.388 t1 +3.11 t2 + 3.92t3 + 0.215 t4 with R square 50.8% and with moisture is Moisture = -1.40-0.00123 T4 + 0.00032 T3 + 0.00260 T2 - 0.00292 T1 - 0.0105 t1 + 0.0290 t2 + 0.0452 t3 + 0.00061 t4 with R square of 49.9%. Smoking room energy analysis found useful energy was 27.8%. The energy stored in the material construction 7.3%. Lost of energy in conversion of wood combustion, ventilation and others were 16.6%. The energy flowed out through the contact of material construction with the ambient air was found to be the highest contribution to energy losses, it reached 48.3%.

Modeling Converters during the Warm-up Period for Hydrocarbon Oxidation

Catalytic converters are used for minimizing the release of pollutants to the atmosphere. It is during the warm-up period that hydrocarbons are seen to be released in appreciable quantities from these converters. In this paper the conversion of a fast oxidizing hydrocarbon propylene is analysed using two numerical methods. The quasi steady state method assumes the accumulation terms to be negligible in the gas phase mass and energy balance equations, however this term is present in the solid phase energy balance. The unsteady state model accounts for the accumulation term to be present in the gas phase mass and energy balance and in the solid phase energy balance. The results derived from the two models for gas concentration, gas temperature and solid temperature are compared.