Comparison of Stochastic Point Process Models of Rainfall in Singapore

Extensive rainfall disaggregation approaches have been developed and applied in climate change impact studies such as flood risk assessment and urban storm water management.In this study, five rainfall models that were capable ofdisaggregating daily rainfall data into hourly one were investigated for the rainfall record in theChangi Airport, Singapore. The objectives of this study were (i) to study the temporal characteristics of hourly rainfall in Singapore, and (ii) to evaluate the performance of variousdisaggregation models. The used models included: (i) Rectangular pulse Poisson model (RPPM), (ii) Bartlett-Lewis Rectangular pulse model (BLRPM), (iii) Bartlett-Lewis model with 2 cell types (BL2C), (iv) Bartlett-Lewis Rectangular with cell depth distribution dependent on duration (BLRD), and (v) Neyman-Scott Rectangular pulse model (NSRPM). All of these models werefitted using hourly rainfall data ranging from 1980 to 2005 (which was obtained from Changimeteorological station).The study results indicated that the weight scheme of inversely proportional variance could deliver more accurateoutputs for fitting rainfall patterns in tropical areas, and BLRPM performedrelatively better than other disaggregation models.

Urban Water Management at the Time of Natural Disaster

since in natural accidents, facilities that relate to this vita element are underground so, it is difficult to find quickly some right, exact and definite information about water utilities. There fore, this article has done operationally in Boukan city in Western Azarbaijan of Iran and it tries to represent operation and capabilities of Geographical Information system (GIS) in urban water management at the time of natural accidents. Structure of this article is that firstly it has established a comprehensive data base related to water utilities by collecting, entering, saving and data management, then by modeling water utilities we have practically considered its operational aspects related to water utility problems in urban regions.

The Household Behavior on Solid Waste and Wastewater Management in Municipal Area with Cleanliness Policy Determined by Community

The Bangnanglee Sub-district Administrative Office, Thailand had initiated a policy to environmental protection with encouraging household waste management in order to promote civil responsibility for domestic hygienic. This research studied the household behaviors on solid waste and wastewater management. A sample population of 306 families answered a questionnaire. The study showed that, on average, domestic activities had produced 1.93 kilograms of waste per household per day. It has been found that 79% of the households made several attempts to reduce their own amount of waste. 80% of the households stationed their own garbage bins. 71% managed their waste by selling recyclable products. As for the rest of the waste, 51% burned them, while 29% disposed their waste in the nearby public trashcans and other 13% have them buried. As for wastewater, 60% of the households disposed it into the sewage, whereas 30% disposed them right from their elevated house.

Development of Storm Water Quality Improvement Strategy Plan for Local City Councils in Western Australia

The aim of this study was to develop a storm water quality improvement strategy plan (WQISP) which assists managers and decision makers of local city councils in enhancing their activities to improve regional water quality. City of Gosnells in Western Australia has been considered as a case study. The procedure on developing the WQISP consists of reviewing existing water quality data, identifying water quality issues in the study areas and developing a decision making tool for the officers, managers and decision makers. It was found that land use type is the main factor affecting the water quality. Therefore, activities, sources and pollutants related to different land use types including residential, industrial, agricultural and commercial are given high importance during the study. Semi-structured interviews were carried out with coordinators of different management sections of the regional councils in order to understand the associated management framework and issues. The issues identified from these interviews were used in preparing the decision making tool. Variables associated with the defined “value versus threat" decision making tool are obtained from the intensive literature review. The main recommendations provided for improvement of water quality in local city councils, include non-structural, structural and management controls and potential impacts of climate change.

Urban Flood Control and Management - An Integrated Approach

Flood management is one of the important fields in urban storm water management. Floods are influenced by the increase of huge storm event, or improper planning of the area. This study mainly provides the flood protection in four stages; planning, flood event, responses and evaluation. However it is most effective then flood protection is considered in planning/design and evaluation stages since both stages represent the land development of the area. Structural adjustments are often more reliable than nonstructural adjustments in providing flood protection, however structural adjustments are constrained by numerous factors such as political constraints and cost. Therefore it is important to balance both adjustments with the situation. The technical decisions provided will have to be approved by the higher-ups who have the power to decide on the final solution. Costs however, are the biggest factor in determining the final decision. Therefore this study recommends flood protection system should have been integrated and enforces more in the early stages (planning and design) as part of the storm water management plan. Factors influencing the technical decisions provided should be reduced as low as possible to avoid a reduction in the expected performance of the proposed adjustments.

Modeling Spatial Distributions of Point and Nonpoint Source Pollution Loadings in the Great Lakes Watersheds

A physically based, spatially-distributed water quality model is being developed to simulate spatial and temporal distributions of material transport in the Great Lakes Watersheds of the U.S. Multiple databases of meteorology, land use, topography, hydrography, soils, agricultural statistics, and water quality were used to estimate nonpoint source loading potential in the study watersheds. Animal manure production was computed from tabulations of animals by zip code area for the census years of 1987, 1992, 1997, and 2002. Relative chemical loadings for agricultural land use were calculated from fertilizer and pesticide estimates by crop for the same periods. Comparison of these estimates to the monitored total phosphorous load indicates that both point and nonpoint sources are major contributors to the total nutrient loads in the study watersheds, with nonpoint sources being the largest contributor, particularly in the rural watersheds. These estimates are used as the input to the distributed water quality model for simulating pollutant transport through surface and subsurface processes to Great Lakes waters. Visualization and GIS interfaces are developed to visualize the spatial and temporal distribution of the pollutant transport in support of water management programs.

Complexity of Operation and Maintenance in Irrigation Network Management-A Case of the Dez Scheme in the Greater Dezful, Iran

Food and fibre production in arid and semi-arid regions has emerged as one of the major challenges for various socio-economic and political reasons such as the food security and self-sufficiency. Productive use of the renewable water resources has risen on top ofthe decision-making agenda. For this reason, efficient operation and maintenance of modern irrigation and drainage schemes become part and parcel and indispensible reality in agricultural policy making arena. The aim of this paper is to investigate the complexity of operating and maintaining such schemes, mainly focussing on challenges which enhance and opportunities that impedsustainable food and fibre production. The methodology involved using secondary data complemented byroutine observations and stakeholders views on issues that influence the O&M in the Dez command area. The SPSS program was used as an analytical framework for data analysis and interpretation.Results indicate poor application efficiency in most croplands, much of which is attributed to deficient operation of conveyance and distribution canals. These in turn, are reportedly linked to inadequate maintenance of the pumping stations and hydraulic structures like turnouts,flumes and other control systems particularly in the secondary and tertiary canals. Results show that the aforementioned deficiencies have been the major impediment to establishing regular flow toward the farm gates which subsequently undermine application efficiency and tillage operationsat farm level. Results further show that accumulative impact of such deficiencies has been the major causes of poorcrop yield and quality that deem production system in these croplands uneconomic. Results further show that the present state might undermine the sustainability of agricultural system in the command area. The overall conclusion being that present water management is unlikely to be responsive to challenges that the sector faces. And in the absence of coherent measures to shift the status quo situation in favour of more productive resource use, it would be hard to fulfil the objectives of the National Economic and Socio-cultural Development Plans.

'Drought Proofing' Australian Cities: Implications for Climate Change Adaptation and Sustainability

Urban water management in Australia faces increasing pressure to deal with the challenges of droughts, growing population and the climate change uncertainty. Addressing these challenges is an opportunity to incorporate the parallel goals of sustainable water management and climate change adaptation through holistic, non-technical means. This paper presents case studies from Perth and Sydney which show how despite robust adaptation plans and experience, recent efforts to 'drought proof' cities have focused on supply-side measures (i.e. desalination), rather than rethinking how water is used and managing demand. The trend towards desalination as a climate adaptation measure raises questions about the sustainability of urban water futures in Australia.

Irrigation Scheduling for Maize and Indian-mustard based on Daily Crop Water Requirement in a Semi- Arid Region

Maize and Indian mustard are significant crops in semi-arid climate zones of India. Improved water management requires precise scheduling of irrigation, which in turn requires an accurate computation of daily crop evapotranspiration (ETc). Daily crop evapotranspiration comes as a product of reference evapotranspiration (ET0) and the growth stage specific crop coefficients modified for daily variation. The first objective of present study is to develop crop coefficients Kc for Maize and Indian mustard. The estimated values of Kc for maize at the four crop growth stages (initial, development, mid-season, and late season) are 0.55, 1.08, 1.25, and 0.75, respectively, and for Indian mustard the Kc values at the four growth stages are 0.3, 0.6, 1.12, and 0.35, respectively. The second objective of the study is to compute daily crop evapotranspiration from ET0 and crop coefficients. Average daily ETc of maize varied from about 2.5 mm/d in the early growing period to > 6.5 mm/d at mid season. The peak ETc of maize is 8.3 mm/d and it occurred 64 days after sowing at the reproductive growth stage when leaf area index was 4.54. In the case of Indian mustard, average ETc is 1 mm/d at the initial stage, >1.8 mm/d at mid season and achieves a peak value of 2.12 mm/d on 56 days after sowing. Improved schedules of irrigation have been simulated based on daily crop evapo-transpiration and field measured data. Simulation shows a close match between modeled and field moisture status prevalent during crop season.

Can Smart Meters Create Smart Behaviour?

Intelligent technologies are increasingly facilitating sustainable water management strategies in Australia. While this innovation can present clear cost benefits to utilities through immediate leak detection and deference of capital costs, the impact of this technology on households is less distinct. By offering real-time engagement and detailed end-use consumption breakdowns, there is significant potential for demand reduction as a behavioural response to increased information. Despite this potential, passive implementation without well-planned residential engagement strategies is likely to result in a lost opportunity. This paper begins this research process by exploring the effect of smart water meters through the lens of three behaviour change theories. The Theory of Planned Behaviour (TPB), Belief Revision theory (BR) and Practice Theory emphasise different variables that can potentially influence and predict household water engagements. In acknowledging the strengths of each theory, the nuances and complexity of household water engagement can be recognised which can contribute to effective planning for residential smart meter engagement strategies.

Conjunctive Surface Runoff and Groundwater Management in Salinity Soils

This research was conducted in the Lower Namkam Irrigation Project situated in the Namkam River Basin in Thailand. Degradation of groundwater quality in some areas is caused by saline soil spots beneath ground surface. However, the tail regulated gate structure on the Namkam River, a lateral stream of the Mekong River. It is aimed for maintaining water level in the river at +137.5 to +138.5 m (MSL) and flow to the irrigation canals based on a gravity system since July 2009. It might leach some saline soil spots from underground to soil surface if lack of understanding of the conjunctive surface water and groundwater behaviors. This research has been conducted by continuously the observing of both shallow and deep groundwater level and quality from existing observation wells. The simulation of surface water was carried out using a hydrologic modeling system (HEC-HMS) to compute the ungauged side flow catchments as the lateral flows for the river system model (HEC-RAS). The constant water levels in the upstream of the operated gate caused a slight rising up of shallow groundwater level when compared to the water table. However, the groundwater levels in the confined aquifers remained less impacted than in the shallow aquifers but groundwater levels in late of wet season in some wells were higher than the phreatic surface. This causes salinization of the groundwater at the soil surface and might affect some crops. This research aims for the balance of water stage in the river and efficient groundwater utilization in this area.

Use of GIS for the Performance Evaluation of Canal Irrigation System in Rice Wheat Cropping Zone

The research study evaluated the performance of irrigation system by using special scientific tools like Remote Sensing and GIS technology, so that proper measurements could be taken for the sustainable agriculture and water management. Different performance evaluation parameters had been calculated for the purposed data was gathered from field investigation and different government and private organizations. According to the calculations, organic matter ranges from 0.19% (low value) to 0.76% (high value). In flat irrigation system for wheat yield ranges from 3347.16 to 5260.39 kg/ha, while the total water applied to wheat crop ranges from 252.94 to 279.19 mm and WUE ranges from 13.07 to 18.37 kg/ha/mm. For rice yield ranges from 3347.47 to 5433.07 kg/ha with total water supplied to rice crop ranges from 764.71 to 978.15 mm and WUE ranges from 3.49 to 5.71 kg/ha/mm. Similarly, in raised bed system wheat yield ranges from 4569.13 to 6008.60 kg/ha, total water supplied ranges from 158.87 to 185.09 mm and WUE ranges from 27.20 to 33.54 kg/ha/mm while in rice crop, yield ranges from 5285.04 to 6716.69 kg/ha, total water supplied ranges from 600.72 to 755.06 mm and WUE ranges from 6.41 to 10.05 kg/ha/mm. Almost 51.3% water saving is observed in bed irrigation system as compared to flat system. Less water supplied to beds is more affective as its WUE value is higher than flat system where more water is supplied in both the seasons. Similarly, RWS values show that maximum water deficit while minimum area is getting adequate water supply. Greater yield is recorded in bed system as plant per square meter is more in bed system in comparison of flat system Thus, the integration of GIS tools to regularly compute performance indices could provide irrigation managers with the means for managing efficiently the irrigation system.

Aquatic Modeling: An Interplay between Scales

This paper presents an integrated knowledge-based approach to multi-scale modeling of aquatic systems, with a view to enhancing predictive power and aiding environmental management and policy-making. The basic phases of this approach have been exemplified in the case of a bay in Saronicos Gulf (Attiki, Greece). The results showed a significant problem with rising phytoplankton blooms linked to excessive microbial growth, arisen mostly due to increased nitrogen inflows; therefore, the nitrification/denitrification processes of the benthic and water column sub-systems have provided the quality variables to be monitored for assessing environmental status. It is thereby demonstrated that the proposed approach facilitates modeling choices and implementation option decisions, while it provides substantial support for knowledge and experience capitalization in long-term water management.

Response of Chickpea Genotypes to Drought

Water is the main component of biological processes. Water management is important to obtain higher productivity. In this study, some of the yield components were investigated together with different drought levels. Four chickpea genotypes (CDC Frontier, CDC Luna, Sawyer and Sierra) were grown in pots with 3 different irrigation levels (a dose of 17.5 ml, 35 ml and 70 ml for each pot per day) after three weeks from sowing. In the research, flowering, pod set, pod per plant, fertile pod, double seed/pod, stem diameter, plant weight, seed per plant, 1000 seed weight, seed diameter, vegetation length and weekly plant height were measured. Consequently, significant differences were observed on all the investigated characteristics owing to genotypes (except double seed/pod and stem diameter), water levels (except first pod, seed weight and height on 3rd week) and genotype x water level interaction (except first pod, double seed/pod, seed weight and height).

A Short Glimpse to Environmental Management at Alborz Integrated Land and Water Management Project-Iran

Environmental considerations have become an integral part of developmental thinking and decision making in many countries. It is growing rapidly in importance as a discipline of its own. Preventive approaches have been used at the evolutional process of environmental management as a broad and dynamic system for dealing with pollution and environmental degradation. In this regard, Environmental Assessment as an activity for identification and prediction of project’s impacts carried out in the world and its legal significance dates back to late 1960. In Iran, according to the Article 2 of Environmental Protection Act, Environmental Impact Assessment (EIA) should be prepared for seven categories of project. This article has been actively implementing by Department of Environment at 1997. World Bank in 1989 attempted to introducing application of Environmental Assessment for making decision about projects which are required financial assistance in developing countries. So, preparing EIA for obtaining World Bank loan was obligated. Alborz Project is one of the World Bank Projects in Iran which is environmentally significant. Seven out of ten W.B safeguard policies were considered at this project. In this paper, Alborz project, objectives, safeguard policies and role of environmental management will be elaborated

Groundwater Management–A Policy Perspective

Groundwater has become the most dependable source of fresh water for agriculture, domestic and industrial uses in the past few decades. This wide use of groundwater if left uncontrolled and unseen will lead to overexploitation causing sea water intrusion in the coastal areas and illegal water marketing. Several Policies and Acts have been enacted to regulate and manage the use of this valuable resource. In spite of this the over extraction of groundwater beyond the recharging capacity of aquifers and depletion in the quality of groundwater is continuing. The current study aims at reviewing the Acts and Policies existing in the State of Tamil Nadu and in the National level regarding groundwater regulation and management. Further an analysis is made on the rights associated with the usage of groundwater resources and the gaps in these policies have been analyzed. Some suggestions are made to reform the existing groundwater policies for better management and regulation of the resource.

Linking Urban Planning and Water Planning to Achieve Sustainable Development and Liveability Outcomes in the New Growth Areas of Melbourne, Australia

The city of Melbourne in Victoria, Australia, provides a number of examples of how a growing city can integrate urban planning and water planning to achieve sustainable urban development, environmental protection, liveability and integrated water management outcomes, and move towards becoming a “Water Sensitive City". Three examples are provided - the development at Botanic Ridge, where a 318 hectare residential development is being planned and where integrated water management options are being implemented using a “triple bottom line" sustainability investment approach; the Toolern development, which will capture and reuse stormwater and recycled water to greatly reduce the suburb-s demand for potable water, and the development at Kalkallo where a 1,200 hectare industrial precinct development is planned which will merge design of the development's water supply, sewerage services and stormwater system. The Paper argues that an integrated urban planning and water planning approach is fundamental to creating liveable, vibrant communities which meet social and financial needs while being in harmony with the local environment. Further work is required on developing investment frameworks and risk analysis frameworks to ensure that all possible solutions can be assessed equally.

Economical Operation of Hydro-Thermal Power System based on Multi-path Adaptive Tabu Search

An economic operation scheduling problem of a hydro-thermal power generation system has been properly solved by the proposed multipath adaptive tabu search algorithm (MATS). Four reservoirs with their own hydro plants and another one thermal plant are integrated to be a studied system used to formulate the objective function under complicated constraints, eg water managements, power balance and thermal generator limits. MATS with four subsearch units (ATSs) and two stages of discarding mechanism (DM), has been setting and trying to solve the problem through 25 trials under function evaluation criterion. It is shown that MATS can provide superior results with respect to single ATS and other previous methods, genetic algorithms (GA) and differential evolution (DE).

Evaluation of Green Roof System for Green Building Projects in Malaysia

The implementations of green roof have been widely used in the developed countries such as Germany, United Kingdom, United States and Canada. Green roof have many benefits such as aesthetic and economic value, ecological gain which are optimization of storm water management, urban heat island mitigation and energy conservation. In term of pollution, green roof can control the air and noise pollution in urban cities. The application of green roof in Malaysian building has been studied with the previous work of green roof either in Malaysia or other Asian region as like Indonesia, Singapore, Thailand, Taiwan and several other countries that have similar climate and environment as in Malaysia. These technologies of adapting green roof have been compared to the Green Building Index (GBI) of Malaysian buildings. The study has concentrated on the technical aspect of green roof system having focused on i) waste & recyclable materials ii) types of plants and method of planting and iii) green roof as tool to reduce storm water runoff. The finding of these areas will be compared to the suitability in achieving good practice of the GBI in Malaysia. Results show that most of the method are based on the countries own climate and environment. This suggests that the method of using green roof must adhere to the tropical climate of Malaysia. Suggestion of this research will be viewed in term of the sustainability of the green roof. Further research can be developed to implement the best method and application in Malaysian climate especially in urban cities and township.

Assessing the Global Water Productivity of Some Irrigation Command Areas in Iran

The great challenge of the agricultural sector is to produce more crop from less water, which can be achieved by increasing crop water productivity. The modernization of the irrigation systems offers a number of possibilities to expand the economic productivity of water and improve the virtual water status. The objective of the present study is to assess the global water productivity (GWP) within the major irrigation command areas of I.R. Iran. For this purpose, fourteen irrigation command areas where located in different areas of Iran were selected. In order to calculate the global water productivity of irrigation command areas, all data on the delivered water to cropping pattern, cultivated area, crops water requirement, and yield production rate during 2002-2006 were gathered. In each of the command areas it seems that the cultivated crops have a higher amount of virtual water and thus can be replaced by crops with less virtual water. This is merely suggested due to crop water consumption and at the time of replacing crops, economic value as well as cultural and political factors must be considered. The results indicated that the lowest GWP belongs to Mahyar and Borkhar irrigation areas, 0.24 kg m-3, and the highest is that of the Dez irrigation area, 0.81 kg m-3. The findings demonstrated that water management in the two irrigation areas is just efficient. The difference in the GWP of irrigation areas is due to variations in the cropping pattern, amount of crop productions, in addition to the effective factors in the water use efficiency in the irrigation areas.