Temperature Control of Industrial Water Cooler using Hot-gas Bypass

In this study, we experiment on precise control outlet temperature of water from the water cooler with hot-gas bypass method based on PI control logic for machine tool. Recently, technical trend for machine tools is focused on enhancement of speed and accuracy. High speedy processing causes thermal and structural deformation of objects from the machine tools. Water cooler has to be applied to machine tools to reduce the thermal negative influence with accurate temperature controlling system. The goal of this study is to minimize temperature error in steady state. In addition, control period of an electronic expansion valve were considered to increment of lifetime of the machine tools and quality of product with a water cooler.

Analysis of Hollow Rollers Implementation in Flexible Manufacturing of Large Bearings

In this paper is study the possibility of successfully implementing of hollow roller concept in order to minimize inertial mass of the large bearings, with major results in diminution of the material consumption, increasing of power efficiency (in wind power station area), increasing of the durability and life duration of the large bearings systems, noise reduction in working, resistance to vibrations, an important diminution of losses by abrasion and reduction of the working temperature. In this purpose was developed an original solution through which are reduced mass, inertial forces and moments of large bearings by using of hollow rollers. The research was made by using the method of finite element analysis applied on software type Solidworks - Nastran. Also, is study the possibility of rapidly changing the manufacturing system of solid and hollow cylindrical rollers.

Multi-Font Farsi/Arabic Isolated Character Recognition Using Chain Codes

Nowadays, OCR systems have got several applications and are increasingly employed in daily life. Much research has been done regarding the identification of Latin, Japanese, and Chinese characters. However, very little investigation has been performed regarding Farsi/Arabic characters recognition. Probably the reason is difficulty and complexity of those characters identification compared to the others and limitation of IT activities in Farsi and Arabic speaking countries. In this paper, a technique has been employed to identify isolated Farsi/Arabic characters. A chain code based algorithm along with other significant peculiarities such as number and location of dots and auxiliary parts, and the number of holes existing in the isolated character has been used in this study to identify Farsi/Arabic characters. Experimental results show the relatively high accuracy of the method developed when it is tested on several standard Farsi fonts.

Biocompatibility of NiTi Alloy Implants in vivo

In this study, the powders of Ni and Ti with 50.5 at.% Ni for 12 h were blended and cold pressed at the different pressures (50, 75 and100 MPa).The porous product obtained after Ni-Ti compacts were synthesized by SHS (self-propagating hightemperature synthesis) in the different preheating temperatures (200, 250 and 300oC) and heating rates (30, 60 and 90oC/min). The effects of the pressure, preheating temperature and heating rate were investigated on biocompatibility in vivo. The porosity in the synthesized products was in the range of 50.7–59.7 vol. %. The pressure, preheating temperature and heating rate were found to have an important effect on the biocompatibility in-vivo of the synthesized products. Max. fibrotic tissue within the porous implant was found in vivo periods (6 months), in which compacting pressure 100MPa.

Periodic Control of a Reverse Osmosis Water Desalination Unit

Enhancement of the performance of a reverse osmosis (RO) unit through periodic control is studied. The periodic control manipulates the feed pressure and flow rate of the RO unit. To ensure the periodic behavior of the inputs, the manipulated variables (MV) are transformed into the form of sinusoidal functions. In this case, the amplitude and period of the sinusoidal functions become the surrogate MV and are thus regulated via nonlinear model predictive control algorithm. The simulation results indicated that the control system can generate cyclic inputs necessary to enhance the closedloop performance in the sense of increasing the permeate production and lowering the salt concentration. The proposed control system can attain its objective with arbitrary set point for the controlled outputs. Successful results were also obtained in the presence of modeling errors.

HIV Modelling - Parallel Implementation Strategies

We report on the development of a model to understand why the range of experience with respect to HIV infection is so diverse, especially with respect to the latency period. To investigate this, an agent-based approach is used to extract highlevel behaviour which cannot be described analytically from the set of interaction rules at the cellular level. A network of independent matrices mimics the chain of lymph nodes. Dealing with massively multi-agent systems requires major computational effort. However, parallelisation methods are a natural consequence and advantage of the multi-agent approach and, using the MPI library, are here implemented, tested and optimized. Our current focus is on the various implementations of the data transfer across the network. Three communications strategies are proposed and tested, showing that the most efficient approach is communication based on the natural lymph-network connectivity.

New Exact Three-Wave Solutions for the (2+1)-Dimensional Asymmetric Nizhnik-Novikov-Veselov System

New exact three-wave solutions including periodic two-solitary solutions and doubly periodic solitary solutions for the (2+1)-dimensional asymmetric Nizhnik-Novikov- Veselov (ANNV) system are obtained using Hirota's bilinear form and generalized three-wave type of ansatz approach. It is shown that the generalized three-wave method, with the help of symbolic computation, provides an e¤ective and powerful mathematical tool for solving high dimensional nonlinear evolution equations in mathematical physics.

Steady-State Performance of a New Model for UPFC Applied to Multi-Machines System with Nonlinear Load

In this paper, a new developed construction model of the UPFC is proposed. The construction of this model consists of one shunt compensation block and two series compensation blocks. In this case, the UPFC with the new construction model will be investigated when it is installed in multi-machine systems with nonlinear load model. In addition, the steady–state performance of the new model operating as impedance compensation will be presented and compared with that obtained from the system without compensation.

An Experimental Comparison of Unsupervised Learning Techniques for Face Recognition

Face Recognition has always been a fascinating research area. It has drawn the attention of many researchers because of its various potential applications such as security systems, entertainment, criminal identification etc. Many supervised and unsupervised learning techniques have been reported so far. Principal Component Analysis (PCA), Self Organizing Maps (SOM) and Independent Component Analysis (ICA) are the three techniques among many others as proposed by different researchers for Face Recognition, known as the unsupervised techniques. This paper proposes integration of the two techniques, SOM and PCA, for dimensionality reduction and feature selection. Simulation results show that, though, the individual techniques SOM and PCA itself give excellent performance but the combination of these two can also be utilized for face recognition. Experimental results also indicate that for the given face database and the classifier used, SOM performs better as compared to other unsupervised learning techniques. A comparison of two proposed methodologies of SOM, Local and Global processing, shows the superiority of the later but at the cost of more computational time.

Analysis of the Coupled Stretching Bending Problem of Stiffened Plates by a BEM Formulation Based on Reissner's Hypothesis

In this work, the plate bending formulation of the boundary element method - BEM, based on the Reissner?s hypothesis, is extended to the analysis of plates reinforced by beams taking into account the membrane effects. The formulation is derived by assuming a zoned body where each sub-region defines a beam or a slab and all of them are represented by a chosen reference surface. Equilibrium and compatibility conditions are automatically imposed by the integral equations, which treat this composed structure as a single body. In order to reduce the number of degrees of freedom, the problem values defined on the interfaces are written in terms of their values on the beam axis. Initially are derived separated equations for the bending and stretching problems, but in the final system of equations the two problems are coupled and can not be treated separately. Finally are presented some numerical examples whose analytical results are known to show the accuracy of the proposed model.

Silicon-based Low-Power Reconfigurable Optical Add-Drop Multiplexer (ROADM)

We demonstrate a 1×4 coarse wavelength division-multiplexing (CWDM) planar concave grating multiplexer/demultiplexer and its application in re-configurable optical add/drop multiplexer (ROADM) system in silicon-on-insulator substrate. The wavelengths of the demonstrated concave grating multiplexer align well with the ITU-T standard. We demonstrate a prototype of ROADM comprising two such concave gratings and four wide-band thermo-optical MZI switches. Undercut technology which removes the underneath silicon substrate is adopted in optical switches in order to minimize the operation power. For all the thermal heaters, the operation voltage is smaller than 1.5 V, and the switch power is ~2.4 mW. High throughput pseudorandom binary sequence (PRBS) data transmission with up to 100 Gb/s is demonstrated, showing the high-performance ROADM functionality.

Hopf Bifurcation Analysis for a Delayed Predator–prey System with Stage Structure

In this paper, a delayed predator–prey system with stage structure is investigated. Sufficient conditions for the system to have multiple periodic solutions are obtained when the delay is sufficiently large by applying Bendixson-s criterion. Further, some numerical examples are given.

Comparison of Multi-User Detectors of DS-CDMA System

DS-CDMA system is well known wireless technology. This system suffers from MAI (Multiple Access Interference) caused by Direct Sequence users. Multi-User Detection schemes were introduced to detect the users- data in presence of MAI. This paper focuses on linear multi-user detection schemes used for data demodulation. Simulation results depict the performance of three detectors viz-conventional detector, Decorrelating detector and Subspace MMSE (Minimum Mean Square Error) detector. It is seen that the performance of these detectors depends on the number of paths and the length of Gold code used.

Applications of Entropy Measures in Field of Queuing Theory

In the present communication, we have studied different variations in the entropy measures in the different states of queueing processes. In case of steady state queuing process, it has been shown that as the arrival rate increases, the uncertainty increases whereas in the case of non-steady birth-death process, it is shown that the uncertainty varies differently. In this pattern, it first increases and attains its maximum value and then with the passage of time, it decreases and attains its minimum value.

Water and Soil Environment Pollution Reduction by Filter Strips

Contour filter strips planted with perennial vegetation can be used to improve surface and ground water quality by reducing pollutant, such as NO3-N, and sediment outflow from cropland to a river or lake. Meanwhile, the filter strips of perennial grass with biofuel potentials also have economic benefits of producing ethanol. In this study, The Soil and Water Assessment Tool (SWAT) model was applied to the Walnut Creek Watershed to examine the effectiveness of contour strips in reducing NO3-N outflows from crop fields to the river or lake. Required input data include watershed topography, slope, soil type, land-use, management practices in the watershed and climate parameters (precipitation, maximum/minimum air temperature, solar radiation, wind speed and relative humidity). Numerical experiments were conducted to identify potential subbasins in the watershed that have high water quality impact, and to examine the effects of strip size and location on NO3-N reduction in the subbasins under various meteorological conditions (dry, average and wet). Variable sizes of contour strips (10%, 20%, 30% and 50%, respectively, of a subbasin area) planted with perennial switchgrass were selected for simulating the effects of strip size and location on stream water quality. Simulation results showed that a filter strip having 10%-50% of the subbasin area could lead to 55%- 90% NO3-N reduction in the subbasin during an average rainfall year. Strips occupying 10-20% of the subbasin area were found to be more efficient in reducing NO3-N when placed along the contour than that when placed along the river. The results of this study can assist in cost-benefit analysis and decision-making in best water resources management practices for environmental protection.

Multiple Peaks Tracking Algorithm using Particle Swarm Optimization Incorporated with Artificial Neural Network

Due to the non-linear characteristics of photovoltaic (PV) array, PV systems typically are equipped with the capability of maximum power point tracking (MPPT) feature. Moreover, in the case of PV array under partially shaded conditions, hotspot problem will occur which could damage the PV cells. Partial shading causes multiple peaks in the P-V characteristic curves. This paper presents a hybrid algorithm of Particle Swarm Optimization (PSO) and Artificial Neural Network (ANN) MPPT algorithm for the detection of global peak among the multiple peaks in order to extract the true maximum energy from PV panel. The PV system consists of PV array, dc-dc boost converter controlled by the proposed MPPT algorithm and a resistive load. The system was simulated using MATLAB/Simulink package. The simulation results show that the proposed algorithm performs well to detect the true global peak power. The results of the simulations are analyzed and discussed.

Gated Community: The Past and Present in China

Gated community has gained its dominant in residential areas development that it has become the standard development pattern of the newly built residential areas in contemporary China. The form of gated community has its own advantages and rationality that meet the needs of quite a lot of residents, but it-s also believed by researchers that the form has great damage to the urban morphology and development, and has a negative impact on residents- living style. However, there is still a considerable controversy of the origins and outcomes. Though recognized as a global phenomenon, gated community developed in China is greatly to do with the specific local forces, respect to the unique historical, political and socio-cultural momentums. A historical review of the traditional settlements in China and the trends that how Gated community has gained its contemporary form, is indispensable for comprehending the local forces, and provide a new perspective to solve the controversy.

Software Tools for System Identification and Control using Neural Networks in Process Engineering

Neural networks offer an alternative approach both for identification and control of nonlinear processes in process engineering. The lack of software tools for the design of controllers based on neural network models is particularly pronounced in this field. SIMULINK is properly a widely used graphical code development environment which allows system-level developers to perform rapid prototyping and testing. Such graphical based programming environment involves block-based code development and offers a more intuitive approach to modeling and control task in a great variety of engineering disciplines. In this paper a SIMULINK based Neural Tool has been developed for analysis and design of multivariable neural based control systems. This tool has been applied to the control of a high purity distillation column including non linear hydrodynamic effects. The proposed control scheme offers an optimal response for both theoretical and practical challenges posed in process control task, in particular when both, the quality improvement of distillation products and the operation efficiency in economical terms are considered.

A Dynamic Programming Model for Maintenance of Electric Distribution System

The paper presents dynamic programming based model as a planning tool for the maintenance of electric power systems. Every distribution component has an exponential age depending reliability function to model the fault risk. In the moment of time when the fault costs exceed the investment costs of the new component the reinvestment of the component should be made. However, in some cases the overhauling of the old component may be more economical than the reinvestment. The comparison between overhauling and reinvestment is made by optimisation process. The goal of the optimisation process is to find the cost minimising maintenance program for electric power distribution system.

A Force Measurement Evaluation Tool for Telerobotic Cutting Applications: Development of an Effective Characterization Platform

Sensorized instruments that accurately measure the interaction forces (between biological tissue and instrument endeffector) during surgical procedures offer surgeons a greater sense of immersion during minimally invasive robotic surgery. Although there is ongoing research into force measurement involving surgical graspers little corresponding effort has been carried out on the measurement of forces between scissor blades and tissue. This paper presents the design and development of a force measurement test apparatus, which will serve as a sensor characterization and evaluation platform. The primary aim of the experiments is to ascertain whether the system can differentiate between tissue samples with differing mechanical properties in a reliable, repeatable manner. Force-angular displacement curves highlight trends in the cutting process as well the forces generated along the blade during a cutting procedure. Future applications of the test equipment will involve the assessment of new direct force sensing technologies for telerobotic surgery.