Rapid Finite-Element Based Airport Pavement Moduli Solutions using Neural Networks

This paper describes the use of artificial neural networks (ANN) for predicting non-linear layer moduli of flexible airfield pavements subjected to new generation aircraft (NGA) loading, based on the deflection profiles obtained from Heavy Weight Deflectometer (HWD) test data. The HWD test is one of the most widely used tests for routinely assessing the structural integrity of airport pavements in a non-destructive manner. The elastic moduli of the individual pavement layers backcalculated from the HWD deflection profiles are effective indicators of layer condition and are used for estimating the pavement remaining life. HWD tests were periodically conducted at the Federal Aviation Administration-s (FAA-s) National Airport Pavement Test Facility (NAPTF) to monitor the effect of Boeing 777 (B777) and Beoing 747 (B747) test gear trafficking on the structural condition of flexible pavement sections. In this study, a multi-layer, feed-forward network which uses an error-backpropagation algorithm was trained to approximate the HWD backcalculation function. The synthetic database generated using an advanced non-linear pavement finite-element program was used to train the ANN to overcome the limitations associated with conventional pavement moduli backcalculation. The changes in ANN-based backcalculated pavement moduli with trafficking were used to compare the relative severity effects of the aircraft landing gears on the NAPTF test pavements.

Performance Evaluation of an Aboveground LNG Storage Tank Cover using Nondestructive and Destructive Tests

In this study, a new procedure for inspecting damages on LNG storage tanks was proposed with the use of structural diagnostic techniques: i.e., nondestructive inspection techniques such as macrography, the hammer sounding test, the Schmidt hammer test, and the ultrasonic pulse velocity test, and destructive inspection techniques such as the compressive strength test, the chloride penetration test, and the carbonation test. From the analysis of all the test results, it was concluded that the LNG storage tank cover was in good condition. Such results were also compared with the Korean concrete standard specifications and design values. In addition, the remaining life of the LNG storage tank was estimated by using existing models. Based on the results, an LNG storage tank cover performance evaluation procedure was suggested.