Micro-Hydrokinetic for Remote Rural Electrification

Standalone micro-hydrokinetic river (MHR) system is one of the promising technologies to be used for remote rural electrification. It simply requires the flow of water instead of elevation or head, leading to expensive civil works. This paper demonstrates an economic benefit offered by a standalone MHR system when compared to the commonly used standalone systems such as solar, wind and diesel generator (DG) at the selected study site in Kwazulu Natal. Wind speed and solar radiation data of the selected rural site have been taken from national aeronautics and space administration (NASA) surface meteorology database. The hybrid optimization model for electric renewable (HOMER) software was used to determine the most feasible solution when using MHR, solar, wind or DG system to supply 5 rural houses. MHR system proved to be the best cost-effective option to consider at the study site due to its low cost of energy (COE) and low net present cost (NPC).

Identification of Slum Areas for Improvement Inputs in Lafia Town, Nasarawa State

One of the United Nations Millennium Development targets is to 'achieve significant improvement in lives of at least 100 million slum dwellers, by 2020'. To monitor progress on this target a first step is to develop an operational definition to identify slum settlements. The indicators selected are: access to water and sanitation, sufficient living area, a house with durable material on a non-hazardous location and with tenure security. This paper describes the techniques of identifying slums and applied the techniques in identifying slum in Lafia town. The methodology used was selection of one district in Lafia town for this study and the district was zoned into four units. The total of 10% sample size out of 2,482 households of 250 questionnaires was administered using systematic sampling method based on proportion of houses at each zones as 90, 70, 40 and 50 respectively. The result shows that the area is a second order degeneration that needs a major improvement. Recommendations were made in this regard for urgent intervention in improving or upgrading of housing and infrastructural facilities

Emergence of New Capitalist Class and Issues of Market, Merit and Social Justice: The Business and Economics of Higher Education in India

This paper analyses the structural changes in education sector since the introduction of liberalization policy in India. This paper explains how the so-called non-profit trusts and societies appropriated the liberalization policy and enhanced themselves as new capitalist class in higher education sector. Over the decades, the policy witnessed the role of private sector in terms of maintaining market equilibrium. The state also witnessed the incompatibility of the private sector in inculcating the values of social justice. The most important consequence of the policy is to witness the rise of new capitalist class and academic capitalism. When the state came to realize that it no longer cope up with market demands, it opens the entry of private sector in higher education. Concessions and tax exemptions were provided to the trusts and societies to establish higher education institutions. There is a basic difference between western countries and India in providing higher education by the trusts and societies. In western countries the big business houses contributed their surplus revenues to promote higher education and research as a complementary service to society and nation. In India, several entrepreneurs came up with business motive using education sector. Over the period, they accumulated wealth at the cost of students and concessions from the government. Four major results can now be identified: production of manpower in view of market demands; reduction of standards in higher education; bypassing the values of social justice; and the rise of new capitalist class from the business of education. This paper tries to substantiate these issues with the inputs from case studies.

Approach to Implementation of Power Management with Load Prioritizations in Modern Civil Aircraft

Any use of energy in industrial productive activities is combined with various environment impacts. Withintransportation, this fact was not only found among land transport, railways and maritime transport, but also in the air transport industry. An effective climate protection requires strategies and measures for reducing all greenhouses gas emissions, in particular carbon dioxide, and must take into account the economic, ecologic and social aspects. It seem simperative now to develop and manufacture environmentally friendly products and systems, to reduce consumption and use less resource, and to save energy and power. Today-sproducts could better serve these requirements taking into account the integration of a power management system into the electrical power system.This paper gives an overview of an approach ofpower management with load prioritization in modernaircraft. Load dimensioning and load management strategies on current civil aircraft will be presented and used as a basis for the proposed approach.

Stakeholder Background and Knowledge Regarding Green Home Rating in Malaysia

Green home rating has emerged as an important agenda to practice the principles of sustainability. In Malaysia, the establishment of the 'Green Building Index ' Residential New Construction- (GBI-RNC) has brought this agenda closer to the stakeholders of the local green building industry. GBI-RNC focuses on the evaluation of the environmental impacts posed by houses rather than assessing the Triple-Bottom-Line (TBL) of Sustainability which also include socio-economic factors. Therefore, as part of a wider study, a survey was conducted to gather the backgrounds of green building stakeholders in Malaysia and their responses to a number of exploratory questions regarding the setting up of a framework to rate green homes against the TBL. This paper reports the findings from Section A and B from this survey and discusses them accordingly with a conclusion that forms part of the basis for a new generation green home rating framework specifically for use in Malaysia.

Design of an SNMP Agent for OSGi Service Platforms

On one hand, SNMP (Simple Network Management Protocol) allows integrating different enterprise elements connected through Internet into a standardized remote management. On the other hand, as a consequence of the success of Intelligent Houses they can be connected through Internet now by means of a residential gateway according to a common standard called OSGi (Open Services Gateway initiative). Due to the specifics of OSGi Service Platforms and their dynamic nature, specific design criterions should be defined to implement SNMP Agents for OSGi in order to integrate them into the SNMP remote management. Based on the analysis of the relation between both standards (SNMP and OSGi), this paper shows how OSGi Service Platforms can be included into the SNMP management of a global enterprise, giving implementation details about an SNMP Agent solution and the definition of a new MIB (Management Information Base) for managing OSGi platforms that takes into account the specifics and dynamic nature of OSGi.

Hazards Assessment of Radon Exhalation Rate and Radium Content in the Soil Samples in Iraqi Kurdistan Using Passive and Active Detecting Methods

This study aims to assess the environmental hazards from radon exhalation rate in the soil samples in selected locations in Iraqi Kurdistan, using passive (CR-39NTDs) and active (RAD7) detecting method. Radon concentration, effective radium content and radon exhalation rate were estimated in soil samples that collected at the depth level of 30 cm inside 124 houses. The results show that the emanation rate for radon gas was variation from location to other, depending on the geological formation. Most health risks come from emanation of radon and its daughter due to its contribution for indoor radon, so the results showed that there is a linear relationship between the ratio of soil and indoor radon concentration (CSoil Rn222/ Cindoor Rn222) and the effective radium content in soil samples. The results show that radon concentration has high and low values in Hajyawa city and Er. Tyrawa Qr, respectively. A comparison between our results with that mentioned in international reports was done.

Traces of Birdhouse Tradition in Anatolia

The birdhouses and dovecotes, which are the indicator of naturalness and human-animal relationship, are one of the traditional cultural values of Turkey. With their structures compatible with nature and respectful to humans the bird houses and dovecotes, which have an important position in local urbanization models as a representative of the civil architecture with their unique form and function are important subjects that should be evaluated in a wide frame comprising from architecture to urbanism, from ecologic agriculture to globalization. The traditional bird houses and dovecotes are disregarded due to the insensitivity affecting the city life and the change in the public sense of art. In this study, the characteristic properties of traditional dovecotes and birdhouses, started in 13th century and ended in 19th century in Anatolia, are tried to be defined for the sustainability of the tradition and for giving a new direction to the designers.

Impacts of the Courtyard with Glazed Roof on House Winter Thermal Conditions

The 'wind-rain' house has a courtyard with glazed roof, which allows more direct sunlight to come into indoor spaces during the winter. The glazed roof can be partially opened or closed and automatically controlled to provide natural ventilation in order to adjust for indoor thermal conditions and the roof area can be shaded by reflective insulation materials during the summer. Two field studies for evaluating indoor thermal conditions of the two 'windrain' houses have been carried out by author in 2009 and 2010. Indoor and outdoor air temperature and relative humidity adjacent to floor and ceiling of the two sample houses were continuously tested at 15-minute intervals, 24 hours a day during the winter months. Based on field study data, this study investigates relationships between building design and indoor thermal condition of the 'windrain' house to improve the future house design for building thermal comfort and energy efficiency

Methods for Analyzing the Energy Efficiencyand Cost Effectiveness of Evaporative Cooling Air Conditioning

Air conditioning systems of houses consume large quantity of electricity. To reducing energy consumption for air conditioning purposes it is becoming attractive the use of evaporative cooling air conditioning which is less energy consuming compared to air chillers. But, it is obvious that higher energy efficiency of evaporative cooling is not enough to judge whether evaporative cooling economically is competitive with other types of cooling systems. To proving the higher energy efficiency and cost effectiveness of the evaporative cooling competitive analysis of various types of cooling system should be accomplished. For noted purpose optimization mathematical model for each system should be composed based on system approach analysis. In this paper different types of evaporative cooling-heating systems are discussed and methods for increasing their energy efficiency and as well as determining of their design parameters are developed. The optimization mathematical models for each of them are composed with help of which least specific costs for each of them are reviled. The comparison of specific costs proved that the most efficient and cost effective is considered the “direct evaporating" system if it is applicable for given climatic conditions. Next more universal and applicable for many climatic conditions system providing least cost of heating and cooling is considered the “direct evaporating" system.

Automatic Light Control in Domotics using Artificial Neural Networks

Home Automation is a field that, among other subjects, is concerned with the comfort, security and energy requirements of private homes. The configuration of automatic functions in this type of houses is not always simple to its inhabitants requiring the initial setup and regular adjustments. In this work, the ubiquitous computing system vision is used, where the users- action patterns are captured, recorded and used to create the contextawareness that allows the self-configuration of the home automation system. The system will try to free the users from setup adjustments as the home tries to adapt to its inhabitants- real habits. In this paper it is described a completely automated process to determine the light state and act on them, taking in account the users- daily habits. Artificial Neural Network (ANN) is used as a pattern recognition method, classifying for each moment the light state. The work presented uses data from a real house where a family is actually living.

Sustainable Architecture Analyses of Walls in Miyaneh Village Houses, Iran

Even though so many efforts have been taken to renovate and renew the architecture of Miyaneh villages in cold and dry regions of Iran-s northwest, these efforts failed due to lack of significant study and ignoring the past and sustainable history of those villages. Considering the overpopulation of Iran-s villages as well as the importance in preventing their immigration to cities, recognizing village architecture and its construction technology is of great significance to attain sustainable residence in villages. As the only vertical surface in the space, wall possesses its unique special characteristics, and it is also a very important architectural element able to provide the immunity and comfort space for the residents. This article analyzes the characteristics of this vertical element, main types of adobe and stone walls, locally constructed technologies, implementation, the elements forming the walls in the frame of village house typology of Miyaneh, which has the most villages in East Azerbaijan, based on sustainable architectural construction materials of walls.

Evaluation of the Effects of Climate Change in Destruction Procedure on Iran-s Historic Buildings

Climate change could lead to changes in cultural environments and landscapes as we know them.Climate change presents an immediate and significant threat to our natural and built environments and to the ways of life which co-exist with these environments. In most traditional buildings, the harmony of texture with nature and environment has been ever considered; so houses and cities have been mixed with their natural environment so astonishingly and the selection and usage of materials have been in such a way that they have provided the utmost conformity with the environment, as the result the created areas have a unique beauty and attraction.The extent to which climate change contributes to destruction procedure on Iran-s historic buildings.is a subject of current discussion. Cities, towns and built-up areas also have their own characteristics that might make them particularly vulnerable to climate change.

Investigation of Genetic Epidemiology of Metabolic Compromises in ß Thalassemia Minor Mutation: Phenotypic Pleiotropy

Human genome is not only the evolutionary summation of all advantageous events, but also houses lesions of deleterious foot prints. A single gene mutation sometimes may express multiple consequences in numerous tissues and a linear relationship of the genotype and the phenotype may often be obscure. ß Thalassemia minor, a transfusion independent mild anaemia, coupled with environment among other factors may articulate into phenotypic pleotropy with Hypocholesterolemia, Vitamin D deficiency, Tissue hypoxia, Hyper-parathyroidism and Psychological alterations. Occurrence of Pancreatic insufficiency, resultant steatorrhoea, Vitamin-D (25-OH) deficiency (13.86 ngm/ml) with Hypocholesterolemia (85mg/dl) in a 30 years old male ß Thal-minor patient (Hemoglobin 11mg/dl with Fetal Hemoglobin 2.10%, Hb A2 4.60% and Hb Adult 84.80% and altered Hemogram) with increased Para thyroid hormone (62 pg/ml) & moderate Serum Ca+2 (9.5mg/ml) indicate towards a cascade of phenotypic pleotropy where the ß Thalassemia mutation ,be it in the 5’ cap site of the mRNA , differential splicing etc in heterozygous state is effecting several metabolic pathways. Compensatory extramedulary hematopoiesis may not coped up well with the stressful life style of the young individual and increased erythropoietic stress with high demand for cholesterol for RBC membrane synthesis may have resulted in Hypocholesterolemia.Oxidative stress and tissue hypoxia may have caused the pancreatic insufficiency, leading to Vitamin D deficiency. This may in turn have caused the secondary hyperparathyroidism to sustain serum Calcium level. Irritability and stress intolerance of the patient was a cumulative effect of the vicious cycle of metabolic compromises. From these findings we propose that the metabolic deficiencies in the ß Thalassemia mutations may be considered as the phenotypic display of the pleotropy to explain the genetic epidemiology. According to the recommendations from the NIH Workshop on Gene-Environment Interplay in Common Complex Diseases: Forging an Integrative Model, study design of observations should be informed by gene-environment hypotheses and results of a study (genetic diseases) should be published to inform future hypotheses. Variety of approaches is needed to capture data on all possible aspects, each of which is likely to contribute to the etiology of disease. Speakers also agreed that there is a need for development of new statistical methods and measurement tools to appraise information that may be missed out by conventional method where large sample size is needed to segregate considerable effect. A meta analytic cohort study in future may bring about significant insight on to the title comment.

Cultural Integration as a Factor of Genesis of the Kazakh Nation in the Conditions of Multicultural Society

The article analyses historical aspects of the formation of the Kazakh nation in the conditions of the multicultural society. The authors underline cultural integration as a significant stage of the cultural advancement of the Kazakh nation. The transition to the modern-style houses, the adoption and development of the secular education gave a rise to the development of the society and culture on the whole.

Structural Analysis of Warehouse Rack Construction for Heavy Loads

In this study rack systems that are structural storage units of warehouses have been analyzed as structural with Finite Element Method (FEA). Each cell of discussed rack system storages pallets which have from 800 kg to 1000 kg weights and 0.80x1.15x1.50 m dimensions. Under this load, total deformations and equivalent stresses of structural elements and principal stresses, tensile stresses and shear stresses of connection elements have been analyzed. The results of analyses have been evaluated according to resistance limits of structural and connection elements. Obtained results have been presented as visual and magnitude.

An Approach of Control System for Automated Storage and Retrieval System (AS/RS)

Automated storage and retrieval systems (AS/RS) become frequently used systems in warehouses. There has been a transition from human based forklift applications to fast and safe AS/RS applications in firm-s warehouse systems. In this study, basic components and automation systems of the AS/RS are examined. Proposed system's automation components and their tasks in the system control algorithm were stated. According to this control algorithm the control system structure was obtained.

Comparative Study of Indoor Environment in Residential Buildings in Hot Humid Climate of Malaysia

There-s a lack in understanding the indoor climate of Malaysian residential. The assumption of traditional house could provide the best indoor environment is too good to be true. This research is to understand indoor environment in three types of Malaysian residential and thermo recorder TR72Ui were placed in indoor spaces for measurement. There are huge differences of indoor environment between housing types, and building material helps to control indoor climate. Traditional house indoor climate was similar to the outdoor. Temperature in the bedroom of terrace and town houses were slightly higher than the living room. Indoor temperature was 2oC lower in the rainy season than the hot season. It was hard to control indoor humidity level in traditional house compared with terrace and town house. As for conclusion, town house provides the best thermal environment to the building occupants and can be improved with good roof insulation.

Comparative Study of Sustainable Architecture in Stairway-like Ushtobin Village, Iran

Stairway Ushtobin Village is one of the five villages with original and sustainable architecture in Northwest of Iran along the border of Armenia, which has been able to maintain its environment and sustainable ecosystem. Studying circulation, function and scale (grand, medium and minor) of space, ratio of full and empty spaces, number and height of stairs, ratio of compound volume to luxury spaces, openings, type of local masonry (stone, mud, wood) and form of covering elements have been carried out in four houses of this village comparatively as some samples in this article, and furthermore, this article analyzes that the architectural shapes and organic texture of the village meet the needs of cold and dry climate. Finally, some efficient plans are offered suiting the present needs of the village to have a sustainable architecture.

Comparison of Different PWM Switching Modes of BLDC Motor as Drive Train of Electric Vehicles

Electric vehicle (EV) is one of the effective solutions to control emission of greenhouses gases in the world. It is of interest for future transportation due to its sustainability and efficiency by automotive manufacturers. Various electrical motors have been used for propulsion system of electric vehicles in last decades. In this paper brushed DC motor, Induction motor (IM), switched reluctance motor (SRM) and brushless DC motor (BLDC) are simulated and compared. BLDC motor is recommended for high performance electric vehicles. PWM switching technique is implemented for speed control of BLDC motor. Behavior of different modes of PWM speed controller of BLDC motor are simulated in MATLAB/SIMULINK. BLDC motor characteristics are compared and discussed for various PWM switching modes under normal and inverter fault conditions. Comparisons and discussions are verified through simulation results.