Ethical Finance and Islamic Finance: Particularities, Possible Convergence and Potential Development

Economics is not an exact science. It cannot be from the moment it is a social science that concerns society organization, a human science that depends on the behavior of the men and women who make a part of this society. Therefore, it cannot ignore morality, the instinctive sense of good and evil, the natural order which place us between certain values, and which religion often sheds light on. In terms of finance, the reference to ethics is becoming more popular than ever. This is naturally due to the growing financial crises. Finance is less and less ethical, but some financial practices have continued to do so. This is the case of ethical finance and Islamic finance. After attempting to define the concepts of ethical finance and Islamic finance, in a period when financial innovation seeks to encourage differentiation in order to create more profit margins, this article attempts to expose the particularities, the convergences and the potentialities of development of these two sensibilities.

On Fourier Type Integral Transform for a Class of Generalized Quotients

In this paper, we investigate certain spaces of generalized functions for the Fourier and Fourier type integral transforms. We discuss convolution theorems and establish certain spaces of distributions for the considered integrals. The new Fourier type integral is well-defined, linear, one-to-one and continuous with respect to certain types of convergences. Many properties and an inverse problem are also discussed in some details.

Lagrange and Multilevel Wavelet-Galerkin with Polynomial Time Basis for Heat Equation

The Wavelet-Galerkin finite element method for solving the one-dimensional heat equation is presented in this work. Two types of basis functions which are the Lagrange and multi-level wavelet bases are employed to derive the full form of matrix system. We consider both linear and quadratic bases in the Galerkin method. Time derivative is approximated by polynomial time basis that provides easily extend the order of approximation in time space. Our numerical results show that the rate of convergences for the linear Lagrange and the linear wavelet bases are the same and in order 2 while the rate of convergences for the quadratic Lagrange and the quadratic wavelet bases are approximately in order 4. It also reveals that the wavelet basis provides an easy treatment to improve numerical resolutions that can be done by increasing just its desired levels in the multilevel construction process.

Simulation of Sample Paths of Non Gaussian Stationary Random Fields

Mathematical justifications are given for a simulation technique of multivariate nonGaussian random processes and fields based on Rosenblatt-s transformation of Gaussian processes. Different types of convergences are given for the approaching sequence. Moreover an original numerical method is proposed in order to solve the functional equation yielding the underlying Gaussian process autocorrelation function.