On Fourier Type Integral Transform for a Class of Generalized Quotients

In this paper, we investigate certain spaces of
generalized functions for the Fourier and Fourier type integral
transforms. We discuss convolution theorems and establish certain
spaces of distributions for the considered integrals. The new Fourier
type integral is well-defined, linear, one-to-one and continuous with
respect to certain types of convergences. Many properties and an
inverse problem are also discussed in some details.




References:
[1] V. K. Tuan and M. Saigo (1995), Convolution of Hankel transform and its
application to an integral involving Bessel functions of first kind. Internat.
J. Math. Math. Sci. 18(3), 545-550.
[2] N. Xuan Thao, V. K. Tuan and N. Minh Khoa (2004), A generalized
convolution with a weight function for the Fourier cosine and sine
Transformations, Fract. Cal.appl. Anal. 7(3), 323-337.
[3] K. N. Minh, V. A. Kakichev and V. K. (1998), Tuan. On the generalized
convolution for Fourier cosine and sine transforms. East-West J. Math.
1(1) 85-90
[4] H. J. Glaeske and V. K. Tuan (1995), Some applications of the convolution
theorem of the Hilbert transform. Integral Transforms and Special
Functions 3(4) , 263-268.
[5] H. M. Srivastava and V. K. Tuan (1995), A new convolution theorem for
the Stieltjes transform and its application to a class of singular integral
equations. Arch. Math. 64(2) ,144-149.
[6] S. K. Q. Al-Omari and A. Kilicman (2012), On diffraction Fresnel
transforms for Boehmians, Abstract and Applied Analysis, Volume 2011,
Article ID 712746.
[7] S. K. Q. Al-Omari and Kilicman, A. (2013), An estimate of Sumudu
transform for Boehmians, Advances in Difference Equations 2013,
2013:77.
[8] S. K. Q. Al-Omari (2013), Hartley transforms on certain space of
generalized functions, Georg. Math. J. 20(3), 415-426.
[9] R. S. Pathak (1997). Integral transforms of generalized functions and their
applications, Gordon and Breach Science Publishers, Australia , Canada,
India, Japan.
[10] S. K. Q. Al-Omari (2014) ; Some characteristics of S
transforms in a class of rapidly decreasing Boehmians, Journal of
Pseudo-Differential Operators and Applications 01/2014; 5(4):527-537.
DOI:10.1007/s11868-014-0102-8.
[11] N. Sundararajan and Y. Srinivas (2010) , Fourier-Hilbert versus
Hartley-Hilbert transforms with some geophysical applications, Journal
of Applied Geophysics 71,157-161.
[12] S. K. Q. Al-Omari and A. Kilicman (2012). Note on Boehmians for
class of optical Fresnel wavelet transforms, Journal of Function
Spaces and Applications, Volume 2012, Article ID 405368,
doi:10.1155/2012/405368.
[13] S. K. Q. Al-Omari and A. Kilicman (2012) , On generalized
Hartley-Hilbert and Fourier-Hilbert transforms, Advances in Difference
Equations 2012, 2012:232 doi:10.1186/1687-1847-2012-232.
[14] S. K. Q. Al-Omari (2015), On a class of generalized Meijer-Laplace
transforms of Fox function type kernels and their extension to a class of
Boehmians. Georg. Math. J. To appear .
[15] S. K. Q. Al-Omari and Adam Kilicman (2013), Unified treatment of the
Kratzel transformation for generalized functions, Abstract and Applied
Analysis Volume 2013, Article ID 750524,1-6.
[16] V. Karunakaran and C. Ganesan (2009), Fourier transform on integrable
Boehmians, Integral Transforms Spec. Funct. 20 , 937–941.
[17] D. Nemzer (2009), A note on multipliers for integrable Boehmians,
Fract. Calc.Appl. Anal., 12 , 87–96.
[18] V. Karunakaran and C. Prasanna Devi (2010), The Laplace transform
on a Boehmian space, Ann. Polon. Math., 97 , 151–157.
[19] C. Ganesan (2010), Weighted ultra distributions and Boehmians, Int.
Journal of Math. Analysis, 4 (15), 703–712.