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On Fourier Type Integral Transform for a Class Of
Generalized Quotients
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Abstract— In this paper, we investigate certain spaces of
generalized functions for the Fourier and Fourier type integral
transforms. We discuss convolution theorems and establish certain
spaces of distributions for the considered integrals. The new Fourier
type integral is well-defined, linear, one-to-one and continuous with
respect to certain types of convergences. Many properties and an
inverse problem are also discussed in some details.
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I. INTRODUCTION

INTEGRAL transforms had provided a well established

method for solving several physical and mathematical

problems. Hartley and Fourier transforms are the powerful

tools employed in diverse fields of science as spectral

analysis, signal and image processing, filtering, encoding, data

compression and reconstruction. They also find applications

in many different research areas, such as computer science,

quantum physics, biomedical and electrical engineering, etc.

The Hilbert transform via the Fourier transform of f (x) was

defined as [11]

f§ (f) (y) =
1

π

∞∫
0

(
f if (x) cos (xy)− frf (x) sin (xy)

)
dx

where frf (x) =
∫∞
0

f (t) cos (xt) dt and ff (x) =∫∞
0

f (t) sin (xt) dt are respectively the real and imaginary

components of the Fourier transform of f, related by f tf =
frf − if if.

In recent years convolution theorems of various integral

transforms such Stieltjes transform [5], Hilbert transform [4],

Hankel transform [1], Fourier cosine and sine transforms [3];

Sumudu transform [7]; Fourier cosine and sine transforms [2]

were given in many citations. In this section of this paper we

define the convolution theorem for f§ as follows.

Theorem 1. Let f§f, f§g be the f§s of f and g respectively.

Then, we have

f§ (f�g) (x) = f§f (x) f§g (x) , (1)

where

(f�g) (t) =

∞∫
0

(
f (t) f ig (η) cos (xη)

+f (t) frg (η) sin (xη)

)
dη.
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f§f (x) f§g (x) =

=

∞∫
0

(
f if (ξ) cos (xξ) + frf (ξ) sin (xξ)

)
dξ

×
∞∫
0

(
f ig (η) cos (xη) + frg (η) sin (xη)

)
dη

=

∞∫
0

⎛
⎝

∞∫
0

(
f if (ξ) f i (x) g (η) cos (xη)
+f ig (ξ) frg (η) sin (xη)

)
dη

⎞
⎠ cosxξdξ

+

∞∫
0

⎛
⎝

∞∫
0

(
frf (ξ) f i (x) g (η) cos (xη)
+f if (ξ) frg (η) sin (xη)

)
dη

⎞
⎠ sinxξdξ.

The equation above can be expressed as

f§f (x) f§g (x) =

∞∫
0

(ϑ (ξ) cos (xξ) + ∂ (ξ) sin (xξ)) dξ,

where

ϑ (ξ) =

∞∫
0

(
f i (x) f (ξ) f i (x) g (η) cos (xη)

+f i (x) f (ξ) frg (η) sin (xη)

)
dη

and

∂ (ξ) =

∞∫
0

(
frf (ξ) f i (x) g (η) cos (xη)

+f i (x) f (ξ) frg (η) sin (xη)

)
dη

Therefore, we can write ϑ (ξ) as

ϑ (ξ) =

∞∫
0

( ∞∫
0

(
f (t) f ig (η) cos (xη)

+f (t) frg (η) sin (xη)

)
dη

)
sin (tξ) dξ

=

∞∫
0

(f�g) (t) sin (tξ) dξ

where

(f�g) (t) =

∞∫
0

(
f (t) f ig (η) cos (xη)
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+f (t) frg (η) sin (xη)

)
dη (2)

Similarly, we proceed to get ∂ (ξ) = fr (f�g) (ξ), where

f�g has its usual meaning of (2). Hence the theorem is

completely established.

Theorem 2. Let f, g and h be integrable functions over

(0,∞). Then, the following identity holds f§ (f�g) =
f§ (g�f) .
Proof. Let f, g be integrable functions over (0,∞) . By aid

of Theorem 1 we write f§ (f�g) = f§ff§g = f§gf§f =
f§ (g�f) .

By considering the inverse transform our theorem follows.

Theorem 3. Let f, g and h be integrable functions over

(0,∞). Then, the following identity holds f§ ((f�g) �h) =
f§ (f� (g�h)) = f§ (g� (f�h)) = f§ (h� (f�g)) .

Proof is similar to that of the previous theorem.

This completes the proof of the theorem.

Theorem 4. Let f, g and h be integrable functions over (0,∞).
Then the following identities are truely hold

(i) f§ (f� (g + h)) = f§ (f�g) + f§ (f�h) .
(ii) f§ (f + (g�h)) = f§ ((f + g) � (f�h)) .

Proof. Proof of (i). Let f, g Let f, g and h be integrable

functions. Then, by taking into account definitions we get

f§ (f� (g + h)) (x)

=
1

π

∞∫
0

(
f i (f� (g + h)) (y) cos (xy)
+fr (f� (g + h)) (y) sin (xy)

)
dy

=
1

π

∞∫
0

(
f i (f�g + f�h) (y) cos (xy)
+fr (f�g + f�h) (y) sin (xy)

)
dy.

Hence properties f i, fr imply that f§ (f� (g + h)) =
f§ (f�g + f�h) . Proof of (ii) is analogous to that given for

Part (i). The theorem is therefore completely proved. Next is

a straightforward corollary of Theorem 2. Proofs are omitted.

Corollary 1. Let f, g and h be integrable functions over

(0,∞) . Then, we have

(i) f�g = g�f.
(ii) (f�g) �h = f� (g�h)
(iii) f� (g + h) = f�g + f�h
(iv) f + (g�h) = (f + g) � (f�h) .

II. f t AND f§ OF THE CLASS OF DISTRIBUTIONS

The space D of testing functions consists of all complex

valued functions ϕ that are infinitely smooth and zero outside

some finite interval. The set of continuous linear forms on D
defines a distributions space, denoted by D′

.

The space of complex valued smooth functions is denoted

by E and its dual space is denoted by E ′
.

By S we denote the space of all complex-valued smooth

functions ϕ such that, as |t| → ∞, they and their partial

derivatives decay to zero faster than all powers of |t|−1
.

Elements of S are called testing functions of rapid descents.

S is indeed a linear space. The dual space of S is called the

space of tempered distributions S ′
.

If φ ∈ S, then its partial derivatives are in S. Indeed, D is

dense in S and S is dense in E . Moreover, E ′ ⊂ S ′ ⊂ D′
, E ′

being the space of distributions of compact support.

In this section, we discuss f t and f§ on the distribution

space.

Theorem 5. If f is in S then f tf is also in S.
Proof ( see [9] ).
Corollary 2. If f is in S then f if and frf are in S.
Corollary 3. If f is in S then f§f is also in S.
Proof. The proof of this corollary follows from the fact that

f if, frf ∈ S.
Let f ∈ S ′

, then, by aid of Corollary 2 and Corollary 3,

we define the distributional f t and f§ transforms as〈
f tf, ϕ

〉
=

〈
f, f tϕ

〉
(3)

and 〈
f§f, ϕ

〉
=

〈
f, f§ϕ

〉
. (4)

(3) and (4) are well defined since f tϕ and f§ϕ are in S.
Further we have

f tf, f§f ∈ S ′

for each f ∈ S ′
.

Corollary 4. If ϕ ∈ S then f tϕ, f§ϕ ∈ S.
Theorem 6. Let f ∈ S ′

. Then f tf and f§f are linear mapping

from S ′
into S ′

.

Proof. Let f, g ∈ S ′
and ϕ ∈ S, α ∈ R be arbitrary then〈

αf t (f + g) , ϕ
〉

=
〈
α (f + g) , f tϕ

〉
= α

〈
f, f tϕ

〉
+ α

〈
g, f tϕ

〉
= α

〈
f tf, ϕ

〉
+ α

〈
f tg, ϕ

〉
.

Similarly, we proceed for f§f, for all f ∈ S ′
.

III. B1

(
S ′

,S,Δ, ∗
)
� β§

∗ AND

B2

(
f§S ′

, f§S, f§Δ, †
)
� β§

† SPACES

One of the most youngest generalization of functions, and

more particularly of distributions, is the theory of Boehmians.

The name Boehmian space is given to all objects defined by an

abstract construction similar to that of field of quotients. The

construction applied to function spaces yields various spaces

of generalized functions.

The complete account of Boehmians was given by [6] −
[8] , [10] , [12]− [15] and [16]− [18] and many others.

Let us now consider the convolution theorem requested in

defining our quotient spaces of Boehmians β§
∗ and β§

† .

Theorem 7. Let f and g be integrable functions over (0,∞) .
Then, we have

f§ (f ∗ g) = 2f§
((

f t
)−1 ((

f tf
) (

f tg
)))

,

where ∗ is the convolution product of f and g ( see [9] ).
Proof. By the definition of f§ we have

f§ (f ∗ g) (x) =
∫ ∞

0

(
ϑi (ξ) cos (xξ) + ϑr (ξ) sin (xξ)

)
dξ.

(5)

where ϑi = f i (f ∗ g) and ϑr = fr (f ∗ g) .
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Fubiniz theorem therefore implies

ϑi (ξ) =

∞∫
−∞

f (z)

∞∫
−∞

g (t− z) sin (tξ) dtdz.

The substitution t− z = y and the fact

sin (y + z) ξ = sin (yξ) cos (zξ) + cos (yξ) sin (zξ)

imply

ϑi = frff if + f iffrf. (6)

Hence, invoking the identities

frf (ξ) =
f tf (ξ) + f tf (−ξ)

2
, f if (ξ) =

f tf (ξ)− f tf (−ξ)

2
,

frg (ξ) =
f tg (ξ) + f tg (−ξ)

2
, f ig (ξ) =

f tg (ξ)− f tg (−ξ)

2

in (6) and computations yield

ϑi (ξ) =
(
f tff tg

)
(ξ) +

(
f tff tg

)
(−ξ)

= f t
((

f t
)−1 (

f tff tg
))

(ξ)

+f t
((

f t
)−1 (

f tff tg
))

(−ξ) . (7)

Equivalently,

ϑi = 2fr
((

f t
)−1 (

f tff tg
))

. (8)

Similarly, we proceed to have

ϑr = 2f i
((

f t
)−1 (

f tff tg
))

. (9)

Hence invoking (8) and (9) in (5) completes the proof of our

theorem.

Definition 1. Denote by β§
∗ the Boehmian space with the

convolution product ∗ as the operation, the S ′
as the group,

S as a subgroup of S ′
(
S dense in S ′

)
and, the set Δ as the

collection of delta sequences from S such that:

Δ1

∫
δn (x) dx = 1

Δ2

∫ |δn (x)| dx < M, 0 < M ∈ R.
Δ3 supp δn (x) → 0 as n → ∞.
Let us consider the space β§

† for our next construction.

Denote by f§S ′
the space of f§s of distributions from S ′

.
Indeed, f§S ′

is a subspace of S ′
, by (4) . The member ϕn ∈

f§S ′
is said to converge in f§S ′

to a value ϕ if there are

τn, τ ∈ S ′
such that τn reaches τ for large values of n. Also,

denote by f§S the set of f§s of test functions from S then

f§S is a subspace of f§S ′
by Corollary 8, In similar notations

we denote f§Δ.

Definition 2. Next, let us consider an operation † : f§S ′ ×
f§S → f§S ′

defined by

† (ϕ, φ) (x) = 2f§
((

f t
)−1 (

f tϕ∗f tφ∗)) (x) , (10)

for ϕ = f§ϕ∗, φ = f§φ∗.
Theorem 8. Let ϕ ∈ f§S ′

and φ ∈ f§S. Then for ϕ = f§ϕ∗

and φ = f§φ∗, we have

† (ϕ, φ) = f§ (ϕ∗ ∗ φ∗) .

Proof. For every ϕ ∈ f§S ′
andφ ∈ f§S, we have

† (ϕ, φ) (x) = 2f§
((

f t
)−1 (

f tϕ∗f tφ∗)) (x)

= f§ (ϕ∗ ∗ φ∗) (x) . (11)

where ϕ = f§ϕ∗, φ = f§φ∗. This finishes the proof of the

theorem.

Theorem 9. Let φ1, φ2 ∈ f§S. Then, we have † (φ1, φ2) =
† (φ1, φ2) .

Proof. Using (9) we get

† (φ1, φ2) = 2f§
((

f t
)−1 (

f tφ∗
1f

tφ∗
2

))
,

where φ1 = f§φ∗
1, φ2 = f§φ∗

2.

By (9) and Theorem 8 we obtain

† (φ1, φ2) (x) = f§ (φ∗
1 ∗ φ∗

2) (x)

= f§ (φ∗
2 ∗ φ∗

1) (x)

= 2f§
((

f t
)−1 (

f tφ∗
2f

tφ∗
1

))
(x)

= † (φ2, φ1) (x) .

This finishes the proof of the theorem.

Theorem 10. Let ϕ1, ϕ2, ϕn, ϕ ∈ f§S ′
and φ ∈ f§S. Then,

we have

(i) † (kϕ1, φ) = † (ϕ1, kφ) = k († (ϕ1, φ)) , k ∈ R.

(ii) † (ϕ1 + ϕ2, φ) = † (ϕ1, φ) + † (ϕ2, φ) .

(iii) † (ϕn, φ) → † (ϕ, φ) as n → ∞.

Proof. Proof of (i) . Linearity of f§s and f t which are obvious

by properties of the integral operators and (9) suggest to have

† (kϕ, φ) (x) = 2f§
((

f t
)−1 (

kf tϕ∗f tφ∗)) (x)

= 2f§
((

f t
)−1 (

f tϕ∗ (kf tφ∗))) (x)

= 2f§
((

f t
)−1 (

f tϕ∗f t (kφ∗)
))

(x)

= † (ϕ, kφ) (x) .

Similarly,

† (kϕ, φ) = k († (ϕ1, φ)) .

Proof of (ii) and (iii) follows from simple computations.

This finishes the proof of the theorem.

Theorem 11 Let (αn) , (εn) ∈ f§Δ. Then, we have

† (αn, εn) ∈ f§Δ.

Proof. For (αn) , (εn) ∈ f§Δ, we have

† (αn, εn) (x) = 2f§
((

f t
)−1 (

f tα∗
nf

tε∗n
))

(x)

= f§ (α∗
n ∗ ε∗n) (x) .

Since α∗
n ∗ ε∗n ∈ Δ we get

† (αn, εn) (x) ∈ f§Δ.

This finishes the proof of the theorem.

Theorem 12 Let ϕ ∈ f§S ′
, φ1, φ2 ∈ f§S. Then, we have

† († (ϕ, φ1) , φ2) = † (ϕ, † (φ1, φ2)) .
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Proof. Follows from similar computations to that used for the

above theorem. In details, for φ1 = f§φ∗
1, φ2 = f§φ∗

2 and

ϕ = f§ϕ∗ we see that

† († (ϕ, φ1) , φ2) (x) = f§ († (ϕ, φ1)
∗ ∗ φ∗

2

)
(x)

= f§
((

f§ (ϕ∗ ∗ φ∗
1)
)∗ ∗ φ∗

2

)
(x)

= f§ ((ϕ∗ ∗ φ∗
1) ∗ φ∗

2) (x)

= f§ (ϕ∗ ∗ (φ∗
1 ∗ φ∗

2)) (x)

= f§ (ϕ∗ ∗ (φ∗
1 ∗ φ∗

2)) (x)

= † (ϕ, † (φ1, φ2)) (x) .

Hence our theorem is completely proved.

Theorem 13. Let ϕ1, ϕ2 ∈ f§S ′
and (δn) ∈ f§Δ and

† (ϕ1, δn) = † (ϕ2, δn) , Then ϕ1 = ϕ2.
Proof. Assume † (ϕ1, δn) (x) = † (ϕ2, δn) (x) . Then, we have

2f§
((

f t
)−1 (

f tϕ∗
1f

tδ∗n
))

(x) = 2f§ (f tϕ∗
2f

tδ∗n
)
(x) .

Hence, f§ (ϕ∗
1 ∗ δ∗n) (x) = f§ (ϕ∗

2 ∗ δ∗n) (x) . Allowing n →
∞ gives f§ (ϕ∗

1) = f§ (ϕ∗
2) . Hence ϕ1 = ϕ2. This finishes

the proof of the theorem.

Theorem 14. Let (δn) ∈ f§Δ and ϕ ∈ f§S ′
. Then, we have

† (ϕ, δn) → ϕ as n → ∞.

Proof. Since ϕ ∈ f§S ′
, (δn) ∈ f§Δ there are ϕ∗ ∈ S, δ∗n ∈ Δ

such that f§ϕ∗ = ϕ and δn = f§δ∗n. Hence

† (ϕ, δn) (x) = 2f§
((

f t
)−1 (

f tϕ∗f tδ∗n
))

(x)

= f§ (ϕ∗ ∗ δ∗n) (x) → f§ϕ∗ = ϕ

as n → ∞. This finishes the proof of the theorem.

The Boehmian space β§
† is completely established.

A typical element in β§
† is given as

[
f§fn
f§φn

]
. Concept of

quotients of sequences is justified by the computation,

† (f§fn, f§φm

)
= 2f§

((
f t
)−1 (

f tfnf
tφm

))
= f§ (fn ∗ φm)

= f§ (fm ∗ φn)

= f§
((

f t
)−1 (

f tfmf tφn

))
= † (f§fm, f§φn

)
.

Hence, † (f§fn, f§φm

)
= † (f§fm, f§φn

)
.

Two quotients
f§fn
f§φn

and
f§gn
f§τn

are said to be equivalent in

the sense of β§
† if † (f§fn, f§τm

)
= † (f§gm, f§φn

)
.

Sum and multiplication by a scalar of two Boehmians can

be defined in a natural way[
f§fn
f§φn

]
+

[
f§gn
f§τn

]
=

[
f§fn † f§τn + f§gn † f§φn

f§φn † f§τn

]

and

α

[
f§fn
f§φn

]
=

[
αf§fn
f§φn

]
, α being a complex number.

The operation † and differentiation are defined by[
f§fn
f§φn

]
†
[
f§gn
f§τn

]
=

[
f§fn † f§gn
f§φn † f§τn

]

and

Dα

[
f§fn
f§φn

]
=

[Dαf§fn
f§φn

]
.

IV. f§e OF GENERALIZED QUOTIENTS (BOEHMIANS)

Let us define the f§e of a Boehmian

[
f§fn
f§φn

]
∈ β§

∗ by

f§e
[
f§fn
f§φn

]
=

[
f§fn
f§φn

]
∈ β§

† . (12)

The operator f§e : β§
∗ → β§

† is clearly well-defined.
We state without proof the following two theorems.

Theorem 15. f§e : β§
∗ → β§

† is linear.

Theorem 16. f§e : β§
∗ → β§

† is one-one.

Theorem 17. f§e : β§
∗ → β§

† is continuous with respect to δ
convergence.

Proof. Let βn
δ→ β in β§

∗ as n → ∞. We show that f§eβn →
f§eβ in β§

† as n → ∞.

For each βn, β ∈ β§
∗ we, can find fn,k, fk ∈ S ′

such that

βn =

[
fn,k
φk

]

and β =

[
fk
φk

]
and fn,k → fkas n → ∞, ∀k ∈ N.

Continuity of the transforms f§ implies

f§fn,k → f§fk as n → ∞ in f§S ′
,

and, hence,
f§fn,k
f§φk

∼ f§fk
f§φk

.

Thus

βn =

[
f§fn,k
f§φk

]
→ β

[
f§fk
f§φk

]
as n → ∞ in β§

† .

This finishes the proof of the theorem.
Theorem 18. f§e is continuous with respect to Δ convergence.

Proof. Let βn
Δ→ β in β§

∗ as n → ∞. Then there is fn ∈ S ′

and φn ∈ Δ such that

(βn − β) ∗ φn =

[
fn ∗ φk

φk

]

and fn → 0 as n → ∞. Hence by Theorem 7,

f§ ((βn − β) ∗ φn) = f§
[
fn ∗ φk

φk

]

=

[
f§ (fn ∗ φk)

f§φk

]
	 f§fn → ∞..

as n → ∞. This finishes the proof of the theorem.

Remark 1. Let β =

[
f§fn
f§δn

]
∈ β§

† . Then, we define the

inverse transform
(
f§e)−1

: β§
† → β§

∗ of f§e as

(
f§e)−1

β =

[
fn
δn

]

which belongs to the space β§
∗.

Properties of transform
(
f§e)−1

can similarly obtained by

techniques similar to that used for f§e. We prefer to omit the

details.
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