Quantifying Freeway Capacity Reductions by Rainfall Intensities Based on Stochastic Nature of Flow Breakdown

This study quantifies a decrement in freeway capacity during rainfall. Traffic and rainfall data were gathered from Highway Agencies and Wunderground weather service. Three inter-urban freeway sections and its nearest weather stations were selected as experimental sites. Capacity analysis found reductions of maximum and mean pre-breakdown flow rates due to rainfall. The Kruskal-Wallis test also provided some evidence to suggest that the variance in the pre-breakdown flow rate is statistically insignificant. Potential application of this study lies in the operation of real time traffic management schemes such as Variable Speed Limits (VSL), Hard Shoulder Running (HSR), and Ramp Metering System (RMS), where speed or flow limits could be set based on a number of factors, including rainfall events and their intensities.

Preferences of Electric Buses in Public Transport; Conclusions from Real Life Testing in Eight Swedish Municipalities

From a theoretical perspective, electric buses can be more sustainable and can be cheaper than fossil fuelled buses in city traffic. The authors have not found other studies based on actual urban public transport in Swedish winter climate. Further on, noise measurements from buses for the European market were found old. The aims of this follow-up study was therefore to test and possibly verify in a real-life environment how energy efficient and silent electric buses are, and then conclude on if electric buses are preferable to use in public transport. The Ebusco 2.0 electric bus, fitted with a 311 kWh battery pack, was used and the tests were carried out during November 2014-April 2015 in eight municipalities in the south of Sweden. Six tests took place in urban traffic and two took place in more of a rural traffic setting. The energy use for propulsion was measured via logging of the internal system in the bus and via an external charging meter. The average energy use turned out to be 8% less (0,96 kWh/km) than assumed in the earlier theoretical study. This rate allows for a 320 km range in public urban traffic. The interior of the bus was kept warm by a diesel heater (biodiesel will probably be used in a future operational traffic situation), which used 0,67 kWh/km in January. This verified that electric buses can be up to 25% cheaper when used in public transport in cities for about eight years. The noise was found to be lower, primarily during acceleration, than for buses with combustion engines in urban bus traffic. According to our surveys, most passengers and drivers appreciated the silent and comfortable ride and preferred electric buses rather than combustion engine buses. Bus operators and passenger transport executives were also positive to start using electric buses for public transport. The operators did however point out that procurement processes need to account for eventual risks regarding this new technology, along with personnel education. The study revealed that it is possible to establish a charging infrastructure for almost all studied bus lines. However, design of a charging infrastructure for each municipality requires further investigations, including electric grid capacity analysis, smart location of charging points, and tailored schedules to allow fast charging. In conclusion, electric buses proved to be a preferable alternative for all stakeholders involved in public bus transport in the studied municipalities. However, in order to electric buses to be a prominent support for sustainable development, they need to be charged either by stand-alone units or via an expansion of the electric grid, and the electricity should be made from new renewable sources.

A Mathematical Framework for Expanding a Railway’s Theoretical Capacity

Analytical techniques for measuring and planning railway capacity expansion activities have been considered in this article. A preliminary mathematical framework involving track duplication and section sub divisions is proposed for this task. In railways, these features have a great effect on network performance and for this reason they have been considered. Additional motivations have also arisen from the limitations of prior models that have not included them.

Impact of Vehicle Travel Characteristics on Level of Service: A Comparative Analysis of Rural and Urban Freeways

The effect of trucks on the level of service is determined by considering passenger car equivalents (PCE) of trucks. The current version of Highway Capacity Manual (HCM) uses a single PCE value for all tucks combined. However, the composition of truck traffic varies from location to location; therefore, a single PCE value for all trucks may not correctly represent the impact of truck traffic at specific locations. Consequently, present study developed separate PCE values for single-unit and combination trucks to replace the single value provided in the HCM on different freeways. Site specific PCE values, were developed using concept of spatial lagging headways (that is the distance between rear bumpers of two vehicles in a traffic stream) measured from field traffic data. The study used data from four locations on a single urban freeway and three different rural freeways in Indiana. Three-stage-leastsquares (3SLS) regression techniques were used to generate models that predicted lagging headways for passenger cars, single unit trucks (SUT), and combination trucks (CT). The estimated PCE values for single-unit and combination truck for basic urban freeways (level terrain) were: 1.35 and 1.60, respectively. For rural freeways the estimated PCE values for single-unit and combination truck were: 1.30 and 1.45, respectively. As expected, traffic variables such as vehicle flow rates and speed have significant impacts on vehicle headways. Study results revealed that the use of separate PCE values for different truck classes can have significant influence on the LOS estimation.