Selection of a Tower Crane Using Augmented Reality in Smart Devices

Appropriate selection of lifting equipments for a high-rise building construction project is one of the important factors to the project’s success. Proper position of a tower crane on a construction site is so important to be determined by an expert or an experienced construction manager who draws working range of a tower crane and moves it over a 2D (dimensional) site layout plan. But it is not usual to use 3D CAD, BIM or virtual reality for temporary facility planning or selection of a tower crane. This study proposes a method to use augmented reality to select proper position of tower cranes. An augmented reality prototype is implemented on a smart device to verify the practicability of the proposed method.

Compressed Adobe Technology Analyses as Local Sustainable Materials for Retrofitting against Earthquake Approaching India Experiences

Due to its geographical location, Iran is considered one of the earthquake-prone areas where the best way to decrease earthquake effects is supposed to be strengthening the buildings. Even though, one idea suggests that the use of adobe in constructing buildings be prohibited for its weak function especially in earthquake-prone areas, however, regarding ecological considerations, sustainability and other local skills, another idea pays special attention to adobe as one of the construction technologies which is popular among people. From the architectural and technological point of view, as strong sustainable building construction materials, compressed adobe construction materials make most of the construction in urban or rural areas ranging from small to big industrial buildings used to replace common earth blocks in traditional systems and strengthen traditional adobe buildings especially against earthquake. Mentioning efficient construction using compressed adobe system as a reliable replacement for traditional soil construction materials , this article focuses on the experiences of India in the fields of sustainable development of compressed adobe systems in the form of system in which the compressed soil is combined with cement, load bearing building with brick/solid concrete block system, brick system using rat trap bond, metal system with adobe infill and finally emphasizes on the use of these systems in the earthquake-struck city of Bam in Iran.

Evaluation of Tension Capacity of Pile (Case Study in Sandy Soil)

High building constructions are increasing in south beaches of the Caspian Sea because of tourist attractions and limitation of residential areas. According to saturated alluvial fields transfer of load from high structures to the soil by piles is inevitable. In spite of most of these piles are under compression forces, tension piles are used in special conditions. Few studies have been conducted because of the limited use of these piles. Tension capacity of openended pipe piles in full scale was tested in this study. The length of the bored piles was 420 up to 480 cm and all were in 120 cm diameter. The results of testing 7 piles were compared with the results of relations given by researches.

Use of Waste Glass as Coarse Aggregate in Concrete: A Possibility towards Sustainable Building Construction

Climate change and environmental pressures are major international issues nowadays. It is time when governments, businesses and consumers have to respond through more environmentally friendly and aware practices, products and policies. This is the prime time to develop alternative sustainable construction materials, reduce greenhouse gas emissions, save energy, look to renewable energy sources and recycled materials, and reduce waste. The utilization of waste materials (slag, fly ash, glass beads, plastic and so on) in concrete manufacturing is significant due to its engineering, financial, environmental and ecological benefits. Thus, utilization of waste materials in concrete production is very much helpful to reach the goal of the sustainable construction. Therefore, this study intends to use glass beads in concrete production. The paper reports on the performance of 9 different concrete mixes containing different ratios of glass crushed to 5 mm - 20 mm maximum size and glass marble of 20 mm size as coarse aggregate. Ordinary Portland cement type 1 and fine sand less than 0.5 mm were used to produce standard concrete cylinders. Compressive strength tests were carried out on concrete specimens at various ages. Test results indicated that the mix having the balanced ratio of glass beads and round marbles possess maximum compressive strength which is 3889 psi, as glass beads perform better in bond formation but have lower strength, on the other hand marbles are strong in themselves but not good in bonding. These mixes were prepared following a specific W/C and aggregate ratio; more strength can be expected to achieve from different W/C, aggregate ratios, adding admixtures like strength increasing agents, ASR inhibitor agents etc.

The Research of Taiwan Green Building Materials (GBM) system and GBM Eco-Efficiency Model on Climate Change

The globe Sustainability has become the subject of international attention, the key reason is that global climate change. Climate and disasters around the abnormal frequency multiplier, the global temperature of the catastrophe and disaster continue to occur throughout the world, as well as countries around the world. Currently there are many important international conferences and policy, it is a "global environmental sustainability " and "living human health " as the goal of development, including the APEC 2007 meeting to "climate Clean Energy" as the theme Sydney Declaration, 2008 World Economic Forum's "Carbon - promote Cool Earth energy efficiency improvement project", the EU proposed "Green Idea" program, the Japanese annual policy, "low-carbon society, sustainable eco-city environment (Eco City) "And from 2009 to 2010 to promote the "Eco-Point" to promote green energy and carbon reduction products .And the 2010 World Climate Change Conference (COP16 United Nations Climate Change Conference Copenhagen), the world has been the subject of Negative conservative "Environmental Protection ", "save energy consumption, " into a positive response to the "Sustainable " and" LOHAS", while Taiwan has actively put forward eco-cities, green building, green building materials and other related environmental response Measures, especially green building construction environment that is the basis of factors, the most widely used application level, and direct contact with human health and the key to sustainable planet. "Sustainable development "is a necessary condition for continuation of the Earth, "healthy and comfortable" is a necessary condition for the continuation of life, and improve the "quality" is a necessary condition for economic development, balance between the three is "to enhance the efficiency of ", According to the World Business Council for Sustainable Development (WBCSD) for the "environmental efficiency "(Eco-Efficiency) proposed: " the achievement of environmental efficiency, the price to be competitive in the provision of goods or services to meet people's needs, improve living Quality at the same time, the goods or services throughout the life cycle. Its impact on the environment and natural resource utilization and gradually reduced to the extent the Earth can load. "whichever is the economy "Economic" and " Ecologic". The research into the methodology to obtain the Taiwan Green Building Material Labeling product as the scope of the study, by investigating and weight analysis to explore green building environmental load (Ln) factor and the Green Building Quality (Qn) factor to Establish green building environmental efficiency assessment model (GBM Eco-Efficiency). And building materials for healthy green label products for priority assessment object, the object is set in the material evidence for the direct response to the environmental load from the floor class-based, explicit feedback correction to the Green Building environmental efficiency assessment model, "efficiency " as a starting point to achieve balance between human "health "and Earth "sustainable development of win-win strategy. The study is expected to reach 1.To establish green building materials and the quality of environmental impact assessment system, 2. To establish value of GBM Eco-Efficiency model, 3. To establish the GBM Eco-Efficiency model for application of green building material feedback mechanisms.

Optimization of CO2 Emissions and Cost for Composite Building Design with NSGA-II

Environmental pollution problems have been globally main concern in all fields including economy, society and culture into the 21st century. Beginning with the Kyoto Protocol, the reduction on the emissions of greenhouse gas such as CO2 and SOX has been a principal challenge of our day. As most buildings unlike durable goods in other industries have a characteristic and long life cycle, they consume energy in quantity and emit much CO2. Thus, for green building construction, more research is needed to reduce the CO2 emissions at each stage in the life cycle. However, recent studies are focused on the use and maintenance phase. Also, there is a lack of research on the initial design stage, especially the structure design. Therefore, in this study, we propose an optimal design plan considering CO2 emissions and cost in composite buildings simultaneously by applying to the structural design of actual building.

Preparation of Tender for Building Conservation Work: Current Practices in Malaysia

Building conservation work generally involves complex and non-standard work different from new building construction processes. In preparing tenders for building conservation projects, therefore, the quantity surveyor must carefully consider the specificity of non-standard items and demarcate the scope of unique conservation work. While the quantity surveyor must appreciate the full range of works to prepare a good tender document, he typically manages many unfamiliar elements, including practical construction methods, restoration techniques and work sequences. Only by fulfilling the demanding requirements of building conservation work can the quantity surveyor enhance his professionalism an area of growing cultural value and economic importance. By discussing several issues crucial to tender preparations for building conservation projects in Malaysia, this paper seeks a deeper understanding of how quantity surveying can better standardize tender preparation work and more successfully manage building conservation processes.

Mercerization Treatment Parameter Effect on Natural Fiber Reinforced Polymer Matrix Composite: A Brief Review

Environmental awareness and depletion of the petroleum resources are among vital factors that motivate a number of researchers to explore the potential of reusing natural fiber as an alternative composite material in industries such as packaging, automotive and building constructions. Natural fibers are available in abundance, low cost, lightweight polymer composite and most importance its biodegradability features, which often called “ecofriendly" materials. However, their applications are still limited due to several factors like moisture absorption, poor wettability and large scattering in mechanical properties. Among the main challenges on natural fibers reinforced matrices composite is their inclination to entangle and form fibers agglomerates during processing due to fiber-fiber interaction. This tends to prevent better dispersion of the fibers into the matrix, resulting in poor interfacial adhesion between the hydrophobic matrix and the hydrophilic reinforced natural fiber. Therefore, to overcome this challenge, fiber treatment process is one common alternative that can be use to modify the fiber surface topology by chemically, physically or mechanically technique. Nevertheless, this paper attempt to focus on the effect of mercerization treatment on mechanical properties enhancement of natural fiber reinforced composite or so-called bio composite. It specifically discussed on mercerization parameters, and natural fiber reinforced composite mechanical properties enhancement.

Influence of Atmospheric Physical Effects on Static Behavior of Building Plate Components Made of Fiber-Cement-Based Materials

The paper presents the brief information on particular results of experimental study focused to the problems of behavior of structural plated components made of fiber-cement-based materials and used in building constructions, exposed to atmospheric physical effects given by the weather changes in the summer period. Weather changes represented namely by temperature and rain cause also the changes of the temperature and moisture of the investigated structural components. This can affect their static behavior that means stresses and deformations, which have been monitored as the main outputs of tests performed. Experimental verification is based on the simulation of the influence of temperature and rain using the defined procedure of warming and water sprinkling with respect to the corresponding weather conditions during summer period in the South Moravian region at the Czech Republic, for which the application of these structural components is mainly planned. Two types of components have been tested: (i) glass-fiber-concrete panels used for building façades and (ii) fiber-cement slabs used mainly for claddings, but also as a part of floor structures or lost shuttering, and so on.

Wind Load Characteristics in Libya

Recent trends in building constructions in Libya are more toward tall (high-rise) building projects. As a consequence, a better estimation of the lateral loading in the design process is becoming the focal of a safe and cost effective building industry. Byin- large, Libya is not considered a potential earthquake prone zone, making wind is the dominant design lateral loads. Current design practice in the country estimates wind speeds on a mere random bases by considering certain factor of safety to the chosen wind speed. Therefore, a need for a more accurate estimation of wind speeds in Libya was the motivation behind this study. Records of wind speed data were collected from 22 metrological stations in Libya, and were statistically analysed. The analysis of more than four decades of wind speed records suggests that the country can be divided into four zones of distinct wind speeds. A computer “survey" program was manipulated to draw design wind speeds contour map for the state of Libya. The paper presents the statistical analysis of Libya-s recorded wind speed data and proposes design wind speed values for a 50-year return period that covers the entire country.

An Intelligent System Framework for Generating Activity List of a Project Using WBS Mind map and Semantic Network

Work Breakdown Structure (WBS) is one of the most vital planning processes of the project management since it is considered to be the fundamental of other processes like scheduling, controlling, assigning responsibilities, etc. In fact WBS or activity list is the heart of a project and omission of a simple task can lead to an irrecoverable result. There are some tools in order to generate a project WBS. One of the most powerful tools is mind mapping which is the basis of this article. Mind map is a method for thinking together and helps a project manager to stimulate the mind of project team members to generate project WBS. Here we try to generate a WBS of a sample project involving with the building construction using the aid of mind map and the artificial intelligence (AI) programming language. Since mind map structure can not represent data in a computerized way, we convert it to a semantic network which can be used by the computer and then extract the final WBS from the semantic network by the prolog programming language. This method will result a comprehensive WBS and decrease the probability of omitting project tasks.