Abstract: Recent investigations have demonstrated the global
sea level rise due to climate change impacts. In this study, climate
changes study the effects of increasing water level in the strait of
Hormuz. The probable changes of sea level rise should be
investigated to employ the adaption strategies. The climatic output
data of a GCM (General Circulation Model) named CGCM3 under
climate change scenario of A1b and A2 were used. Among different
variables simulated by this model, those of maximum correlation
with sea level changes in the study region and least redundancy
among themselves were selected for sea level rise prediction by using
stepwise regression. One of models (Discrete Wavelet artificial
Neural Network) was developed to explore the relationship between
climatic variables and sea level changes. In these models, wavelet
was used to disaggregate the time series of input and output data into
different components and then ANN was used to relate the
disaggregated components of predictors and input parameters to each
other. The results showed in the Shahid Rajae Station for scenario
A1B sea level rise is among 64 to 75 cm and for the A2 Scenario sea
level rise is among 90 t0 105 cm. Furthermore, the result showed a
significant increase of sea level at the study region under climate
change impacts, which should be incorporated in coastal areas
management.
Abstract: In this study, three robust predicting methods, namely artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for computing the resonant frequency of A-shaped compact microstrip antennas (ACMAs) operating at UHF band. Firstly, the resonant frequencies of 144 ACMAs with various dimensions and electrical parameters were simulated with the help of IE3D™ based on method of moment (MoM). The ANN, ANFIS and SVM models for computing the resonant frequency were then built by considering the simulation data. 124 simulated ACMAs were utilized for training and the remaining 20 ACMAs were used for testing the ANN, ANFIS and SVM models. The performance of the ANN, ANFIS and SVM models are compared in the training and test process. The average percentage errors (APE) regarding the computed resonant frequencies for training of the ANN, ANFIS and SVM were obtained as 0.457%, 0.399% and 0.600%, respectively. The constructed models were then tested and APE values as 0.601% for ANN, 0.744% for ANFIS and 0.623% for SVM were achieved. The results obtained here show that ANN, ANFIS and SVM methods can be successfully applied to compute the resonant frequency of ACMAs, since they are useful and versatile methods that yield accurate results.
Abstract: Taiwan is a hyper endemic area for the Hepatitis B
virus (HBV). The estimated total number of HBsAg carriers in the
general population who are more than 20 years old is more than 3
million. Therefore, a case record review is conducted from January
2003 to June 2007 for all patients with a diagnosis of acute hepatitis
who were admitted to the Emergency Department (ED) of a
well-known teaching hospital. The cost for the use of medical
resources is defined as the total medical fee. In this study, principal
component analysis (PCA) is firstly employed to reduce the number of
dimensions. Support vector regression (SVR) and artificial neural
network (ANN) are then used to develop the forecasting model. A total
of 117 patients meet the inclusion criteria. 61% patients involved in
this study are hepatitis B related. The computational result shows that
the proposed PCA-SVR model has superior performance than other
compared algorithms. In conclusion, the Child-Pugh score and
echogram can both be used to predict the cost of medical resources for
patients with acute hepatitis in the ED.
Abstract: Image compression plays a vital role in today-s
communication. The limitation in allocated bandwidth leads to
slower communication. To exchange the rate of transmission in the
limited bandwidth the Image data must be compressed before
transmission. Basically there are two types of compressions, 1)
LOSSY compression and 2) LOSSLESS compression. Lossy
compression though gives more compression compared to lossless
compression; the accuracy in retrievation is less in case of lossy
compression as compared to lossless compression. JPEG, JPEG2000
image compression system follows huffman coding for image
compression. JPEG 2000 coding system use wavelet transform,
which decompose the image into different levels, where the
coefficient in each sub band are uncorrelated from coefficient of
other sub bands. Embedded Zero tree wavelet (EZW) coding exploits
the multi-resolution properties of the wavelet transform to give a
computationally simple algorithm with better performance compared
to existing wavelet transforms. For further improvement of
compression applications other coding methods were recently been
suggested. An ANN base approach is one such method. Artificial
Neural Network has been applied to many problems in image
processing and has demonstrated their superiority over classical
methods when dealing with noisy or incomplete data for image
compression applications. The performance analysis of different
images is proposed with an analysis of EZW coding system with
Error Backpropagation algorithm. The implementation and analysis
shows approximately 30% more accuracy in retrieved image
compare to the existing EZW coding system.
Abstract: Design for cost (DFC) is a method that reduces life
cycle cost (LCC) from the angle of designers. Multiple domain
features mapping (MDFM) methodology was given in DFC. Using
MDFM, we can use design features to estimate the LCC. From the
angle of DFC, the design features of family cars were obtained, such
as all dimensions, engine power and emission volume. At the
conceptual design stage, cars- LCC were estimated using back
propagation (BP) artificial neural networks (ANN) method and
case-based reasoning (CBR). Hamming space was used to measure the
similarity among cases in CBR method. Levenberg-Marquardt (LM)
algorithm and genetic algorithm (GA) were used in ANN. The
differences of LCC estimation model between CBR and artificial
neural networks (ANN) were provided. ANN and CBR separately
each method has its shortcomings. By combining ANN and CBR
improved results accuracy was obtained. Firstly, using ANN selected
some design features that affect LCC. Then using LCC estimation
results of ANN could raise the accuracy of LCC estimation in CBR
method. Thirdly, using ANN estimate LCC errors and correct errors in
CBR-s estimation results if the accuracy is not enough accurate.
Finally, economically family cars and sport utility vehicle (SUV) was
given as LCC estimation cases using this hybrid approach combining
ANN and CBR.
Abstract: Although backpropagation ANNs generally predict
better than decision trees do for pattern classification problems, they
are often regarded as black boxes, i.e., their predictions cannot be
explained as those of decision trees. In many applications, it is
desirable to extract knowledge from trained ANNs for the users to
gain a better understanding of how the networks solve the problems.
A new rule extraction algorithm, called rule extraction from artificial
neural networks (REANN) is proposed and implemented to extract
symbolic rules from ANNs. A standard three-layer feedforward ANN
is the basis of the algorithm. A four-phase training algorithm is
proposed for backpropagation learning. Explicitness of the extracted
rules is supported by comparing them to the symbolic rules generated
by other methods. Extracted rules are comparable with other methods
in terms of number of rules, average number of conditions for a rule,
and predictive accuracy. Extensive experimental studies on several
benchmarks classification problems, such as breast cancer, iris,
diabetes, and season classification problems, demonstrate the
effectiveness of the proposed approach with good generalization
ability.
Abstract: This paper presents the applicability of artificial
neural networks for 24 hour ahead solar power generation forecasting
of a 20 kW photovoltaic system, the developed forecasting is suitable
for a reliable Microgrid energy management. In total four neural
networks were proposed, namely: multi-layred perceptron, radial
basis function, recurrent and a neural network ensemble consisting in
ensemble of bagged networks. Forecasting reliability of the proposed
neural networks was carried out in terms forecasting error
performance basing on statistical and graphical methods. The
experimental results showed that all the proposed networks achieved
an acceptable forecasting accuracy. In term of comparison the neural
network ensemble gives the highest precision forecasting comparing
to the conventional networks. In fact, each network of the ensemble
over-fits to some extent and leads to a diversity which enhances the
noise tolerance and the forecasting generalization performance
comparing to the conventional networks.
Abstract: This paper proposes the method combining artificial
neural network (ANN) with particle swarm optimization (PSO) to
implement the maximum power point tracking (MPPT) by controlling
the rotor speed of the wind generator. First, the measurements of wind
speed, rotor speed of wind power generator and output power of wind
power generator are applied to train artificial neural network and to
estimate the wind speed. Second, the method mentioned above is
applied to estimate and control the optimal rotor speed of the wind
turbine so as to output the maximum power. Finally, the result reveals
that the control system discussed in this paper extracts the maximum
output power of wind generator within the short duration even in the
conditions of wind speed and load impedance variation.
Abstract: In this work, a Modified Functional Link Artificial
Neural Network (M-FLANN) is proposed which is simpler than a
Multilayer Perceptron (MLP) and improves upon the universal
approximation capability of Functional Link Artificial Neural
Network (FLANN). MLP and its variants: Direct Linear Feedthrough
Artificial Neural Network (DLFANN), FLANN and
M-FLANN have been implemented to model a simulated Water Bath
System and a Continually Stirred Tank Heater (CSTH). Their
convergence speed and generalization ability have been compared.
The networks have been tested for their interpolation and
extrapolation capability using noise-free and noisy data. The results
show that M-FLANN which is computationally cheap, performs
better and has greater generalization ability than other networks
considered in the work.
Abstract: Embedded systems need to respect stringent real
time constraints. Various hardware components included in such
systems such as cache memories exhibit variability and therefore
affect execution time. Indeed, a cache memory access from an
embedded microprocessor might result in a cache hit where the
data is available or a cache miss and the data need to be fetched
with an additional delay from an external memory. It is therefore
highly desirable to predict future memory accesses during
execution in order to appropriately prefetch data without incurring
delays. In this paper, we evaluate the potential of several artificial
neural networks for the prediction of instruction memory
addresses. Neural network have the potential to tackle the nonlinear
behavior observed in memory accesses during program
execution and their demonstrated numerous hardware
implementation emphasize this choice over traditional forecasting
techniques for their inclusion in embedded systems. However,
embedded applications execute millions of instructions and
therefore millions of addresses to be predicted. This very
challenging problem of neural network based prediction of large
time series is approached in this paper by evaluating various neural
network architectures based on the recurrent neural network
paradigm with pre-processing based on the Self Organizing Map
(SOM) classification technique.
Abstract: This study presents the application of artificial
neural network for modeling the phenolic compound
migration through vertical soil column. A three layered feed
forward neural network with back propagation training
algorithm was developed using forty eight experimental data
sets obtained from laboratory fixed bed vertical column tests.
The input parameters used in the model were the influent
concentration of phenol(mg/L) on the top end of the soil
column, depth of the soil column (cm), elapsed time after
phenol injection (hr), percentage of clay (%), percentage of
silt (%) in soils. The output of the ANN was the effluent
phenol concentration (mg/L) from the bottom end of the soil
columns. The ANN predicted results were compared with the
experimental results of the laboratory tests and the accuracy of
the ANN model was evaluated.
Abstract: This paper describes an automated event detection and location system for water distribution pipelines which is based upon low-cost sensor technology and signature analysis by an Artificial
Neural Network (ANN). The development of a low cost failure sensor which measures the opacity or cloudiness of the local water
flow has been designed, developed and validated, and an ANN based system is then described which uses time series data produced by
sensors to construct an empirical model for time series prediction and
classification of events. These two components have been installed,
tested and verified in an experimental site in a UK water distribution
system. Verification of the system has been achieved from a series of
simulated burst trials which have provided real data sets. It is concluded that the system has potential in water distribution network
management.
Abstract: Heart failure is the most common reason of death
nowadays, but if the medical help is given directly, the patient-s life
may be saved in many cases. Numerous heart diseases can be
detected by means of analyzing electrocardiograms (ECG). Artificial
Neural Networks (ANN) are computer-based expert systems that
have proved to be useful in pattern recognition tasks. ANN can be
used in different phases of the decision-making process, from
classification to diagnostic procedures. This work concentrates on a
review followed by a novel method.
The purpose of the review is to assess the evidence of healthcare
benefits involving the application of artificial neural networks to the
clinical functions of diagnosis, prognosis and survival analysis, in
ECG signals. The developed method is based on a compound neural
network (CNN), to classify ECGs as normal or carrying an
AtrioVentricular heart Block (AVB). This method uses three
different feed forward multilayer neural networks. A single output
unit encodes the probability of AVB occurrences. A value between 0
and 0.1 is the desired output for a normal ECG; a value between 0.1
and 1 would infer an occurrence of an AVB. The results show that
this compound network has a good performance in detecting AVBs,
with a sensitivity of 90.7% and a specificity of 86.05%. The accuracy
value is 87.9%.
Abstract: This paper presents application artificial intelligent (AI) techniques, namely artificial neural network (ANN), adaptive neuro fuzzy interface system (ANFIS), to estimate the real power transfer between generators and loads. Since these AI techniques adopt supervised learning, it first uses modified nodal equation method (MNE) to determine real power contribution from each generator to loads. Then the results of MNE method and load flow information are utilized to estimate the power transfer using AI techniques. The 25-bus equivalent system of south Malaysia is utilized as a test system to illustrate the effectiveness of both AI methods compared to that of the MNE method. The mean squared error of the estimate of ANN and ANFIS power transfer allocation methods are 1.19E-05 and 2.97E-05, respectively. Furthermore, when compared to MNE method, ANN and ANFIS methods computes generator contribution to loads within 20.99 and 39.37msec respectively whereas the MNE method took 360msec for the calculation of same real power transfer allocation.
Abstract: Predicting short term wind speed is essential in order
to prevent systems in-action from the effects of strong winds. It also
helps in using wind energy as an alternative source of energy, mainly
for Electrical power generation. Wind speed prediction has
applications in Military and civilian fields for air traffic control,
rocket launch, ship navigation etc. The wind speed in near future
depends on the values of other meteorological variables, such as
atmospheric pressure, moisture content, humidity, rainfall etc. The
values of these parameters are obtained from a nearest weather
station and are used to train various forms of neural networks. The
trained model of neural networks is validated using a similar set of
data. The model is then used to predict the wind speed, using the
same meteorological information. This paper reports an Artificial
Neural Network model for short term wind speed prediction, which
uses back propagation algorithm.