A Propose of Personnel Assessment Method Including a Two-Way Assessment for Evaluating Evaluators and Employees

In this paper, we suggest a mechanism of assessment that rater and Ratee (or employees) to convince. There are many problems exist in the personnel assessment. In particular, we were focusing on the three. (1) Raters are not sufficiently recognized assessment point. (2) Ratee are not convinced by the mechanism of assessment. (3) Raters (or Evaluators) and ratees have empathy. We suggest 1: Setting of "understanding of the assessment points." 2: Setting of "relative assessment ability." 3: Proposal of two-way assessment mechanism to solve these problems. As a prerequisite, it is assumed that there are multiple raters. This is because has been a growing importance of multi-faceted assessment. In this model, it determines the weight of each assessment point evaluators by the degree of understanding and assessment ability of raters and ratee. We used the ANP (Analytic Network Process) is a theory that an extension of the decision-making technique AHP (Analytic Hierarchy Process). ANP can be to address the problem of forming a network and assessment of Two-Way is possible. We apply this technique personnel assessment, the weights of rater of each point can be reasonably determined. We suggest absolute assessment for Two-Way assessment by ANP. We have verified that the consent of the two approaches is higher than conventional mechanism. Also, human resources consultant we got a comment about the application of the practice.

The Survey Research and Evaluation of Green Residential Building Based on the Improved Group Analytical Hierarchy Process Method in Yinchuan

Due to the economic downturn and the deterioration of the living environment, the development of residential buildings as high energy consuming building is gradually changing from “extensive” to green building in China. So, the evaluation system of green building is continuously improved, but the current evaluation work has the following problems: (1) There are differences in the cost of the actual investment and the purchasing power of residents, also construction target of green residential building is single and lacks multi-objective performance development. (2) Green building evaluation lacks regional characteristics and cannot reflect the different regional residents demand. (3) In the process of determining the criteria weight, the experts’ judgment matrix is difficult to meet the requirement of consistency. Therefore, to solve those problems, questionnaires which are about the green residential building for Ningxia area are distributed, and the results of questionnaires can feedback the purchasing power of residents and the acceptance of the green building cost. Secondly, combined with the geographical features of Ningxia minority areas, the evaluation criteria system of green residential building is constructed. Finally, using the improved group AHP method and the grey clustering method, the criteria weight is determined, and a real case is evaluated, which is located in Xing Qing district, Ningxia. A conclusion can be obtained that the professional evaluation for this project and good social recognition is basically the same.

An Electrically Small Silver Ink Printed FR4 Antenna for RF Transceiver Chip CC1101

An electrically small meander line antenna is designed for impedance matching with RF transceiver chip CC1101. The design provides the flexibility of tuning the reactance of the antenna over a wide range of values: highly capacitive to highly inductive. The antenna was printed with silver ink on FR4 substrate using the screen printing design process. The antenna impedance was perfectly matched to CC1101 at 433 MHz. The measured radiation efficiency of the antenna was 81.3% at resonance. The 3 dB and 10 dB fractional bandwidth of the antenna was 14.5% and 4.78%, respectively. The read range of the antenna was compared with a copper wire monopole antenna over a distance of five meters. The antenna, with a perfect impedance match with RF transceiver chip CC1101, shows improvement in the read range compared to a monopole antenna over the specified distance.

Environmental Decision Making Model for Assessing On-Site Performances of Building Subcontractors

Buildings cause a variety of loads on the environment due to activities performed at each stage of the building life cycle. Construction is the first stage that affects both the natural and built environments at different steps of the process, which can be defined as transportation of materials within the construction site, formation and preparation of materials on-site and the application of materials to realize the building subsystems. All of these steps require the use of technology, which varies based on the facilities that contractors and subcontractors have. Hence, environmental consequences of the construction process should be tackled by focusing on construction technology options used in every step of the process. This paper presents an environmental decision-making model for assessing on-site performances of subcontractors based on the construction technology options which they can supply. First, construction technologies, which constitute information, tools and methods, are classified. Then, environmental performance criteria are set forth related to resource consumption, ecosystem quality, and human health issues. Finally, the model is developed based on the relationships between the construction technology components and the environmental performance criteria. The Fuzzy Analytical Hierarchy Process (FAHP) method is used for weighting the environmental performance criteria according to environmental priorities of decision-maker(s), while the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method is used for ranking on-site environmental performances of subcontractors using quantitative data related to the construction technology components. Thus, the model aims to provide an insight to decision-maker(s) about the environmental consequences of the construction process and to provide an opportunity to improve the overall environmental performance of construction sites.

Analytic Hierarchy Process Method for Supplier Selection Considering Green Logistics: Case Study of Aluminum Production Sector

The emergence of many environmental issues began with the Industrial Revolution. The depletion of natural resources and emerging environmental challenges over time requires enterprises and managers to take into consideration environmental factors while managing business. If we take notice of these causes; the design and implementation of environmentally friendly green purchasing, production and waste management systems become very important at green logistics systems. Companies can adopt green supply chain with the awareness of these facts. The concept of green supply chain constitutes from green purchasing, green production, green logistics, waste management and reverse logistics. In this study, we wanted to identify the concept of green supply chain and why green supply chain should be applied. In the practice part of the study an analytic hierarchy process (AHP) study is conducted on an aluminum production company to evaluate suppliers.

Supplier Selection Using Sustainable Criteria in Sustainable Supply Chain Management

Selection of suppliers is a crucial problem in the supply chain management. On top of that, sustainable supplier selection is the biggest challenge for the organizations. Environment protection and social problems have been of concern to society in recent years, and the traditional supplier selection does not consider about this factor; therefore, this research work focuses on introducing sustainable criteria into the structure of supplier selection criteria. Sustainable Supply Chain Management (SSCM) is the management and administration of material, information, and money flows, as well as coordination among business along the supply chain. All three dimensions - economic, environmental, and social - of sustainable development needs to be taken care of. Purpose of this research is to maximize supply chain profitability, maximize social wellbeing of supply chain and minimize environmental impacts. Problem statement is selection of suppliers in a sustainable supply chain network by ranking the suppliers against sustainable criteria identified. The aim of this research is twofold: To find out what are the sustainable parameters that can be applied to the supply chain, and to determine how these parameters can effectively be used in supplier selection. Multicriteria decision making tools will be used to rank both criteria and suppliers. AHP Analysis will be used to find out ratings for the criteria identified. It is a technique used for efficient decision making. TOPSIS will be used to find out rating for suppliers and then ranking them. TOPSIS is a MCDM problem solving method which is based on the principle that the chosen option should have the maximum distance from the negative ideal solution (NIS) and the minimum distance from the ideal solution.

Competence-Based Human Resources Selection and Training: Making Decisions

Human Resources (HR) selection and training have various implementation possibilities depending on an organization’s abilities and peculiarities. We propose to base HR selection and training decisions about on a competence-based approach. HR selection and training of employees are topical as there is room for improvement in this field; therefore, the aim of the research is to propose rational decision-making approaches for an organization HR selection and training choice. Our proposals are based on the training development and competence-based selection approaches created within previous researches i.e. Analytic-Hierarchy Process (AHP) and Linear Programming. Literature review on non-formal education, competence-based selection, AHP form our theoretical background. Some educational service providers in Latvia offer employees training, e.g. motivation, computer skills, accounting, law, ethics, stress management, etc. that are topical for Public Administration. Competence-based approach is a rational base for rational decision-making in both HR selection and considering HR training.

Factors for Success in Eco-Industrial Town Development in Thailand

Nowadays, Ministry of Industry has given an attention to develop Eco-industrial towns in Thailand. Eco-industrial towns are a way of demonstrating the application of industrial ecology and are subjects of increased interest as government, business and society. This concept of Eco-industrial town is quite new in Thailand. It is used as a way of achieving more sustainable industrial development. However, many firms or organizations have misunderstood the concept and treated with suspicion. The planning and development of Eco-industrial towns is a significant challenge for the developers and public agencies. This research then gives an attempt to determine current problems of being Eco-Industrial towns and determine success factors for developing Eco-Industrial towns in Thailand. The research starts with giving knowledge about Eco-industrial towns to stakeholders and conducting public hearing in order to acquire the problems of being Eco-industrial towns. Then, factors effecting the development of Eco-Industrial town are collected. The obtained factors are analyzed by using the concept of IOC. Then, the remained factors are categorized and structured based on the concept of AHP. A questionnaire is constructed and distributed to the experts who are involved in the Eco-industrial town project. The result shows that the most significant success criterion is management teams of industrial parks or groups and the second most significant goes to governmental policies.

Material Selection for Footwear Insole Using Analytical Hierarchal Process

Product performance depends on the type and quality of its building material. Successful product must be made using high quality material, and using the right methods. Many foot problems took place as a result of using poor insole material. Therefore, selecting a proper insole material is crucial to eliminate these problems. In this study, the analytical hierarchy process (AHP) is used to provide a systematic procedure for choosing the best material adequate for this application among three material alternatives (polyurethane, poron, and plastzote). Several comparison criteria are used to build the AHP model including: density, stiffness, durability, energy absorption, and ease of fabrication. Poron was selected as the best choice. Inconsistency testing indicates that the model is reasonable, and the materials alternative ranking is effective.

Design for Safety: Safety Consideration in Planning and Design of Airport Airsides

During airport planning and design stages, the major issues of capacity and safety in construction and operation of an airport need to be taken into consideration. The airside of an airport is a major and critical infrastructure that usually consists of runway(s), taxiway system, and apron(s) etc., which have to be designed according to the international standards and recommendations, and local limitations to accommodate the forecasted demands. However, in many cases, airport airsides are suffering from unexpected risks that occurred during airport operations. Therefore, safety risk assessment should be applied in the planning and design of airsides to cope with the probability of risks and their consequences, and to make decisions to reduce the risks to as low as reasonably practicable (ALARP) based on safety risk assessment. This paper presents a combination approach of Failure Modes, Effect, and Criticality Analysis (FMECA), Fuzzy Reasoning Approach (FRA), and Fuzzy Analytic Hierarchy Process (FAHP) to develop a risk analysis model for safety risk assessment. An illustrated example is used to the demonstrate risk assessment process on how the design of an airside in an airport can be analysed by using the proposed safety design risk assessment model.

Developing a Structured and Strategically Focused Performance Assessment System

The number and adequacy of Performance-Indicators (PIs) for organisational purposes are core to the success of organisations and a major concern to the sponsor of this research. This assignment developed a procedure to improve a firm’s performance assessment system, by identifying two key-PIs out of 28 initial ones, and by setting criteria and their relative importance to validate and rank the adequacy and the right number of operational metrics. The Analytical-Hierarchy-Process was used with a synthesismethod to treat data coming from the management inquiries. Although organisational alignment has been achieved, business processes should also be targeted and PIs continuously revised.

Using Analytic Hierarchy Process as a Decision-Making Tool in Project Portfolio Management

Project Portfolio Management (PPM) is an essential component of an organisation’s strategic procedures, which requires attention of several factors to envisage a range of long-term outcomes to support strategic project portfolio decisions. To evaluate overall efficiency at the portfolio level, it is essential to identify the functionality of specific projects as well as to aggregate those findings in a mathematically meaningful manner that indicates the strategic significance of the associated projects at a number of levels of abstraction. PPM success is directly associated with the quality of decisions made and poor judgment increases portfolio costs. Hence, various Multi-Criteria Decision Making (MCDM) techniques have been designed and employed to support the decision-making functions. This paper reviews possible options to enhance the decision-making outcomes in organisational portfolio management processes using the Analytic Hierarchy Process (AHP) both from academic and practical perspectives and will examine the usability, certainty and quality of the technique. The results of the study will also provide insight into the technical risk associated with current decision-making model to underpin initiative tracking and strategic portfolio management.

Hybrid Algorithm for Frequency Channel Selection in Wi-Fi Networks

This article proposes a hybrid algorithm for spectrum allocation in cognitive radio networks based on the algorithms Analytical Hierarchical Process (AHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to improve the performance of the spectrum mobility of secondary users in cognitive radio networks. To calculate the level of performance of the proposed algorithm a comparative analysis between the proposed AHP-TOPSIS, Grey Relational Analysis (GRA) and Multiplicative Exponent Weighting (MEW) algorithm is performed. Four evaluation metrics are used. These metrics are accumulative average of failed handoffs, accumulative average of handoffs performed, accumulative average of transmission bandwidth, and accumulative average of the transmission delay. The results of the comparison show that AHP-TOPSIS Algorithm provides 2.4 times better performance compared to a GRA Algorithm and, 1.5 times better than the MEW Algorithm.

Reinforcement of Calcium Phosphate Cement with E-Glass Fibre

Calcium Phosphate Cement (CPC) due to its high bioactivity and optimum bioresorbability shows excellent bone regeneration capability. Despite it has limited applications as bone implant due to its macro-porous microstructure causing its poor mechanical strength. The reinforcement of apatitic CPCs with biocompatible fibre glass phase is an attractive area of research to improve upon its mechanical strength. Here, we study the setting behaviour of Si-doped and un-doped α tri calcium phosphate (α - TCP) based CPC and its reinforcement with addition of E-glass fibre. Alpha Tri calcium phosphate powders were prepared by solid state sintering of CaCO3 , CaHPO4 and Tetra Ethyl Ortho Silicate (TEOS) was used as silicon source to synthesize Si doped α-TCP powders. Both initial and final setting time of the developed cement was delayed because of Si addition. Crystalline phases of HA (JCPDS 9- 432), α-TCP (JCPDS 29-359) and β-TCP (JCPDS 9-169) were detected in the X-ray diffraction (XRD) pattern after immersion of CPC in simulated body fluid (SBF) for 0 hours to 10 days. As Si incorporation in the crystal lattice stabilized the TCP phase, Si doped CPC showed little slower rate of conversion into HA phase as compared to un-doped CPC. The SEM image of the microstructure of hardened CPC showed lower grain size of HA in un-doped CPC because of premature setting and faster hydrolysis of un-doped CPC in SBF as compared that in Si-doped CPC. Premature setting caused generation of micro and macro porosity in un-doped CPC structure which resulted in its lower mechanical strength as compared to that in Si-doped CPC. It was found that addition of 10 wt% of E-glass fibre into Si-doped α-TCP increased the average DTS of CPC from 8 MPa to 15 MPa as the fibres could resists the propagation of crack by deflecting the crack tip. Our study shows that biocompatible E-glass fibre in optimum proportion in CPC matrix can enhance the mechanical strength of CPC without affecting its biocompatibility. 

A Framework for the Evaluation of Infrastructures’ Serviceability

Aging infrastructures became a serious social problem. This brought out the increased need for the legislation of a new strict guideline for infrastructure management. Although existing guidelines provided basics of how to evaluate and manage the condition of infrastructures, they needed improvements for their evaluation procedures. Most guidelines mainly focused on the structural condition of infrastructures and did not properly reflect service aspects of infrastructures such as performance, public demand, capacity, etc., which were significantly valuable to public. Regardless of the importance, these factors were often neglected in infrastructure evaluations, because they were quite subjective and difficult to quantify in rational manner. Thus, this study proposed a framework to properly identify and evaluate the service indicators. This study showed that service indicators could be grouped into two categories and properly evaluated using AHP and Fuzzy. Overall, proposed framework is expected to assist governmental agency in establishing effective investment strategies for infrastructure improvements.

Prioritising the TQM Enablers and IT Resources in the ICT Industry: An AHP Approach

Total Quality Management (TQM) is a managerial approach that improves the competitiveness of the industry, meanwhile Information technology (IT) was introduced with TQM for handling the technical issues which is supported by quality experts for fulfilling the customers’ requirement. Present paper aims to utilise AHP (Analytic Hierarchy Process) methodology to priorities and rank the hierarchy levels of TQM enablers and IT resource together for its successful implementation in the Information and Communication Technology (ICT) industry. A total of 17 TQM enablers (nine) and IT resources (eight) were identified and partitioned into 3 categories and were prioritised by AHP approach. The finding indicates that the 17 sub-criteria can be grouped into three main categories namely organizing, tools and techniques, and culture and people. Further, out of 17 sub-criteria, three sub-criteria: top management commitment and support, total employee involvement, and continuous improvement got highest priority whereas three sub-criteria such as structural equation modelling, culture change, and customer satisfaction got lowest priority. The result suggests a hierarchy model for ICT industry to prioritise the enablers and resources as well as to improve the TQM and IT performance in the ICT industry. This paper has some managerial implication which suggests the managers of ICT industry to implement TQM and IT together in their organizations to get maximum benefits and how to utilize available resources. At the end, conclusions, limitation, future scope of the study are presented.

Land Suitability Analysis for Maize Production in Egbeda Local Government Area of Oyo State Using GIS Techniques

Maize constitutes a major agrarian production for use by the vast population but despite its economic importance; it has not been produced to meet the economic needs of the country. Achieving optimum yield in maize can meaningfully be supported by land suitability analysis in order to guarantee self-sufficiency for future production optimization. This study examines land suitability for maize production through the analysis of the physicochemical variations in soil properties and other land attributes over space using a Geographic Information System (GIS) framework. Physicochemical parameters of importance selected include slope, landuse, physical and chemical properties of the soil, and climatic variables. Landsat imagery was used to categorize the landuse, Shuttle Radar Topographic Mapping (SRTM) generated the slope and soil samples were analyzed for its physical and chemical components. Suitability was categorized into highly, moderately and marginally suitable based on Food and Agricultural Organisation (FAO) classification, using the Analytical Hierarchy Process (AHP) technique of GIS. This result can be used by small scale farmers for efficient decision making in the allocation of land for maize production.

Optimum Locations for Intercity Bus Terminals with the AHP Approach – Case Study of the City of Esfahan

Interaction between human, location and activity defines space. In the framework of these relations, space is a container for current specifications in relations of the 3 mentioned elements. The change of land utility considered with average performance range, urban regulations, society requirements etc. will provide welfare and comfort for citizens. From an engineering view it is fundamental that choosing a proper location for a specific civil activity requires evaluation of locations from different perspectives. The debate of desirable establishment of municipal service elements in urban regions is one of the most important issues related to urban planning. In this paper, the research type is applicable based on goal, and is descriptive and analytical based on nature. Initially existing terminals in Esfahan are surveyed and then new locations are presented based on evaluated criteria. In order to evaluate terminals based on the considered factors, an AHP model is used at first to estimate weight of different factors and then existing and suggested locations are evaluated using Arc GIS software and AHP model results. The results show that existing bus terminals are located in fairly proper locations. Further results of this study suggest new locations to establish terminals based on urban criteria.

Holomorphic Prioritization of Sets within Decagram of Strategic Decision Making of POSM Using Operational Research (OR): Analytic Hierarchy Process (AHP) Analysis

There is decagram of strategic decisions of operations and production/service management (POSM) within operational research (OR) which must collate, namely: design, inventory, quality, location, process and capacity, layout, scheduling, maintain ace, and supply chain. This paper presents an architectural configuration conceptual framework of a decagram of sets decisions in a form of mathematical complete graph and abelian graph. Mathematically, a complete graph is undirected (UDG), and directed (DG) a relationship where every pair of vertices is connected, collated, confluent, and holomorphic. There has not been any study conducted which, however, prioritizes the holomorphic sets which of POMS within OR field of study. The study utilizes OR structured technique known as The Analytic Hierarchy Process (AHP) analysis for organizing, sorting and prioritizing(ranking) the sets within the decagram of POMS according to their attribution (propensity), and provides an analysis how the prioritization has real-world application within the 21st century.

Preparation and Characterization of Calcium Phosphate Cement

Calcium phosphate cement (CPC) is one of the most attractive bioceramics due to its moldable and shape ability to fill complicated bony cavities or small dental defect positions. In this study, CPC was produced by using mixture of tetracalcium phosphate (TTCP, Ca4O(PO4)2) and dicalcium phosphate anhydrous (DCPA, CaHPO4) in equimolar ratio (1/1) with aqueous solutions of acetic acid (C2H4O2) and disodium hydrogen phosphate dehydrate (Na2HPO4.2H2O) in combination with sodium alginate in order to improve theirs moldable characteristic. The concentration of the aqueous solutions and sodium alginate were varied to investigate the effect of different aqueous solutions and alginate on properties of the cements. The cement paste was prepared by mixing cement powder (P) with aqueous solution (L) in a P/L ratio of 1.0g/0.35ml. X-ray diffraction (XRD) was used to analyses phase formation of the cements. Setting time and compressive strength of the set CPCs were measured using the Gilmore apparatus and Universal testing machine, respectively. The results showed that CPCs could be produced by using both basic (Na2HPO4.2H2O) and acidic (C2H4O2) solutions. XRD results show the precipitation of hydroxyapatite in all cement samples. No change in phase formation among cements using difference concentrations of Na2HPO4.2H2O solutions. With increasing concentration of acidic solutions, samples obtained less hydroxyapatite with a high dicalcium phosphate dehydrate leaded to a shorter setting time. Samples with sodium alginate exhibited higher crystallization of hydroxyapatite than that of without alginate as a result of shorten setting time in a basic solution but a longer setting time in an acidic solution. The stronger cement was attained from samples using the acidic solution with sodium alginate; however the strength was lower than that of using the basic solution.