Semiconvergence of Alternating Iterative Methods for Singular Linear Systems

In this paper, we discuss semiconvergence of the alternating iterative methods for solving singular systems. The semiconvergence theories for the alternating methods are established when the coefficient matrix is a singular matrix. Furthermore, the corresponding comparison theorems are obtained.

Explicit Solutions and Stability of Linear Differential Equations with multiple Delays

We give an explicit formula for the general solution of a one dimensional linear delay differential equation with multiple delays, which are integer multiples of the smallest delay. For an equation of this class with two delays, we derive two equations with single delays, whose stability is sufficient for the stability of the equation with two delays. This presents a new approach to the study of the stability of such systems. This approach avoids requirement of the knowledge of the location of the characteristic roots of the equation with multiple delays which are generally more difficult to determine, compared to the location of the characteristic roots of equations with a single delay.

Characterization of Solutions of Nonsmooth Variational Problems and Duality

In this paper, we introduce a new class of nonsmooth pseudo-invex and nonsmooth quasi-invex functions to non-smooth variational problems. By using these concepts, numbers of necessary and sufficient conditions are established for a nonsmooth variational problem wherein Clarke’s generalized gradient is used. Also, weak, strong and converse duality are established.

Bifurcations for a FitzHugh-Nagumo Model with Time Delays

In this paper, a FitzHugh-Nagumo model with time delays is investigated. The linear stability of the equilibrium and the existence of Hopf bifurcation with delay τ is investigated. By applying Nyquist criterion, the length of delay is estimated for which stability continues to hold. Numerical simulations for justifying the theoretical results are illustrated. Finally, main conclusions are given.

Periodic Orbits in a Delayed Nicholson's Blowflies Model

In this paper, a delayed Nicholson,s blowflies model with a linear harvesting term is investigated. Regarding the delay as a bifurcation parameter, we show that Hopf bifurcation will occur when the delay crosses a critical value. Numerical simulations supporting the theoretical findings are carried out.

Coordinated Design of PSS and STATCOM for Power System Stability Improvement Using Bacteria Foraging Algorithm

This paper presents the coordinated controller design of static synchronous compensator (STATCOM) and power system stabilizers (PSSs) for power system stability improvement. Coordinated design problem of STATCOM-based controller with multiple PSSs is formulated as an optimization problem and optimal controller parameters are obtained using bacteria foraging optimization algorithm. By minimizing the proposed objective function, in which the speed deviations between generators are involved; stability performance of the system is improved. The nonlinear simulation results show that coordinated design of STATCOM-based controller and PSSs improve greatly the system damping oscillations and consequently stability improvement.

Hypolipidemic and Antioxidant Effects of Black Tea Extract and Quercetin in Atherosclerotic Rats

Background: Atherosclerosis is the main cause of cardiovascular disease (CVD) with complex and multifactorial process including atherogenic lipoprotein, oxidized low density lipoprotein (LDL), endothelial dysfunction, plaque stability, vascular inflammation, thrombotic and fibrinolytic disorder, exercises and genetic factor Epidemiological studies have shown tea consumption inversely associated with the development and progression of atherosclerosis. The research objectives: to elucidate hypolipidemic, antioxidant effects, as well as ability to improve coronary artery’s histopathologyof black tea extract (BTE) and quercetin in atherosclerotic rats. Methods: The antioxidant activity was determined by using Superoxide Dismutase activity (SOD) of serum and lipid peroxidation product (Malondialdehyde) of plasma and lipid profile including cholesterol total, LDL, triglyceride (TG), High Density Lipoprotein (HDL) of atherosclerotic rats. Inducing atherosclerotic, rats were given cholesterol and cholic acid in feed during ten weeks until rats indicated atherosclerotic symptom with narrowed artery and foamy cells in the artery’s wall. After rats suffered atherosclerotic, the high cholesterol feed and cholic acid were stopped and rats were given BTE 450; 300; 150 mg/kg body weight (BW) daily, quercetin 15; 10; 5 mg/kg BW daily, compared to rats were given vitamin E 60 mg/kg/BW; simvastatin 2.7 mg/kg BW, probucol 30 mg/kg BW daily for 21 days (first treatment) and 42 days (second treatment), negative control (normal feed), positive control (atherosclerotic rats). Results: BTE and quercetin could lower cholesterol total, triglyceride, LDL MDA and increase HDL, SOD were comparable with simvastatin, probucol both for 21 days and 42 days treatment, as well to improve coronary arteries histopathology. Conclusions: BTE andquercetin have hypolipidemic and antioxidant effects, as well as improve coronary arteries histopathology in atherosclerotic rats.

Resource Efficiency within Current Production

In times of global warming and the increasing shortage of resources, sustainable production is becoming more and more inevitable. Companies cannot only heighten their competitiveness but also contribute positively to environmental protection through efficient energy and resource consumption. Regarding this, technical solutions are often preferred during production, although organizational and process-related approaches also offer great potential. This project focuses on reducing resource usage, with a special emphasis on the human factor. It is the aspiration to develop a methodology that systematically implements and embeds suitable and individual measures and methods regarding resource efficiency throughout the entire production. The measures and methods established help employees handle resources and energy more sensitively. With this in mind, this paper also deals with the difficulties that can occur during the sensitization of employees and the implementation of these measures and methods. In addition, recommendations are given on how to avoid such difficulties.

Stack Ventilation for an Office Building with a Multi-Story Atrium

This study examines the stack ventilation performance of an office building located in Taipei, Taiwan. Atriums in this building act as stacks that facilitate buoyancy-driven ventilation. Computational Fluid Dynamic (CFD) simulations are used to identify interior airflow patterns, and then used these patterns to assess the building’s heat expulsion efficiency. Ambient temperatures of 20°C were adopted as the typical seasonal spring temperature range in Taipei. Further, “zero-wind” conditions are established to ensure simulation results reflected only the buoyancy effect. After checking results against neutral pressure level (NPL) level, airflow, air velocity, and indoor temperature stratification, the lower stack is modified to reduce the NPL in order to remove heat accumulated on the top floor.

A Hybrid Mesh Free Local RBF- Cartesian FD Scheme for Incompressible Flow around Solid Bodies

A method for simulating flow around the solid bodies has been presented using hybrid meshfree and mesh-based schemes. The presented scheme optimizes the computational efficiency by combining the advantages of both meshfree and mesh-based methods. In this approach, a cloud of meshfree nodes has been used in the domain around the solid body. These meshfree nodes have the ability to efficiently adapt to complex geometrical shapes. In the rest of the domain, conventional Cartesian grid has been used beyond the meshfree cloud. Complex geometrical shapes can therefore be dealt efficiently by using meshfree nodal cloud and computational efficiency is maintained through the use of conventional mesh-based scheme on Cartesian grid in the larger part of the domain. Spatial discretization of meshfree nodes has been achieved through local radial basis functions in finite difference mode (RBF-FD). Conventional finite difference scheme has been used in the Cartesian ‘meshed’ domain. Accuracy tests of the hybrid scheme have been conducted to establish the order of accuracy. Numerical tests have been performed by simulating two dimensional steady and unsteady incompressible flows around cylindrical object. Steady flow cases have been run at Reynolds numbers of 10, 20 and 40 and unsteady flow problems have been studied at Reynolds numbers of 100 and 200. Flow Parameters including lift, drag, vortex shedding, and vorticity contours are calculated. Numerical results have been found to be in good agreement with computational and experimental results available in the literature.

Influence of Strength Abilities on Quality of the Handstand

The contribution deals with influence of strength abilities on quality of performance of static balance movement structure – handstand. To test the strength abilities we selected following tests: number of push-ups per minute and persistence in trunk backward bend in sitting position. We tested the dependent variable by three tests – persistence in handstand position on a stabilometric platform, persistence in handstand position and evaluation of quality of handstand performance. Pearson’s correlation coefficient was used to formulate the relationship between variables. The results showed a statistically significant dependence using which we deduced conclusions for training practice.

A Simple Epidemiological Model for Typhoid with Saturated Incidence Rate and Treatment Effect

Typhoid fever is a communicable disease, found only in man and occurs due to systemic infection mainly by Salmonella typhi organism. The disease is endemic in many developing countries and remains a substantial public health problem despite recent progress in water and sanitation coverage. Globally, it is estimated that typhoid causes over 16 million cases of illness each year, resulting in over 600,000 deaths. A mathematical model for assessing the impact of educational campaigns on controlling the transmission dynamics of typhoid in the community, has been formulated and analyzed. The reproductive number has been computed. Stability of the model steady-states has been examined. The impact of educational campaigns on controlling the transmission dynamics of typhoid has been discussed through the basic reproductive number and numerical simulations. At its best the study suggests that targeted education campaigns, which are effective at stopping transmission of typhoid more than 40% of the time, will be highly effective at controlling the disease in the community. 

Production and Extraction of Quercetin and (+)-Catechin from Phyllanthus niruri Callus Culture

Quercetin and (+)-catechin are metabolites present in Phyllanthus niruri plant, have potential in medicinal uses as anticancer and antioxidant agents. Studies on production of quercetin and (+)-catechin from P. niruri callus culture via in vitro technique were carried out and the results were compared to the intact plant. P. niruri explants were cultured on Murashige and Skoog (MS) solidified media supplemented with several phytohormone combinations for one month. The metabolites were extracted from P. niruri callus and intact plant by using carbon dioxide supercritical fluid extraction (SFE) with ethanol as modifier and solvent extraction techniques. The extracts were analyzed by means of HPLC method. Results showed that P. niruri callus culture was successfully established. The highest content of quercetin (1.72%) was found from P. niruri callus grown in media supplemented with 0.8mg/L kinetin and 0.2mg/L 2,4-dicholophenoxyacetic acid (2,4-D), which was 1.2 fold higher than intact plant. Meanwhile, the highest amounts of (+)-catechin (0.63%) was found from P. niruri callus grown in media with addition of 0.2mg/L 1-naphthalene acetic acid (NAA) and 0.8mg/L 2,4-D. The SFE condition in this study showed better extraction efficiency when higher contents of selected metabolites were found in all SFE extracts compared to the common solvent extracts.

Mathematical Model of Depletion of Forestry Resource: Effect of Synthetic Based Industries

A mathematical model is proposed considering the forest biomass density B(t), density of wood based industries W(t) and density of synthetic industries S(t). It is assumed that the forest biomass grows logistically in the absence of wood based industries, but depletion of forestry biomass is due to presence of wood based industries. The growth of wood based industries depends on B(t), while S(t) grows at a constant rate, independent of B(t). Further there is a competition between W(t) and S(t) according to market demand. The proposed model has four ecologically feasible steady states, namely, E1: forest biomass free and wood industries free equilibrium; E2: wood industries free equilibrium and two coexisting equilibria E∗1 , E∗2 . Behavior of the system near all feasible equilibria is analyzed using the stability theory of differential equations. In the proposed model, the natural depletion rate h1 is a crucial parameter and system exhibits Hopf-bifurcation about the non-trivial equilibrium with respect to h1. The analytical results are verified using numerical simulation.

Evaluation of the Triticale Flour Blend Dough in the Mixing and Fermentation Processes

The research was accomplished on triticale flour blend, which was made from whole grain triticale, rye, hull-less barley flour and rice, maize flour. The aim of this research was to evaluate physico-chemical and sensory properties of triticale flour blend dough in the mixing and fermentation processes. For dough making was used triticale flour blend, yeast, sugar, salt, and water. In the mixing process ware evaluated moisture, acidity, pH, and dough sensory properties (softness, viscosity, and stickiness), but in the fermentation process ware evaluated volume, moisture, acidity, and pH. During present research was established that increasing fermentation temperature and time, increase dough temperature, volume, moisture, and acidity. The mixing time and fermentation time and temperature have significant effect (p

Behavior of Concrete Slab Track on Asphalt Trackbed Subjected to Thermal Load

Concrete track slab and asphalt trackbed are being introduced in Korea for providing good bearing capacity, durability to the track and comfortable rideness to passengers. Such a railway system has been designed by the train load so as to ensure stability. But there is lack of research and design for temperature changes which influence the behavior characteristics of concrete and asphalt. Therefore, in this study, the behavior characteristics of concrete track slab subjected to varying temperatures were analyzed through structural analysis using the finite element analysis program. The structural analysis was performed by considering the friction condition on the boundary surfaces in order to analyze the interaction between concrete slab and asphalt trackbed. As a result, the design of the railway system should be designed by considering the interaction and temperature changes between concrete track slab and asphalt trackbed.

Structural Safety Evaluation of Zip-Line Due to Dynamic Impact Load

In recent year, with recent increase of interest towards leisure sports, increased number of Zip-Line or Zip-Wire facilities has built. Many researches have been actively conducted on the emphasis of the cable and the wire at the bridge. However, very limited researches have been conducted on the safety of the Zip-Line structure. In fact, fall accidents from Zip-Line have been reported frequently. Therefore, in this study, the structural safety of Zip-Line under dynamic impact loading condition were evaluated on the previously installed steel cable for leisure (Zip-Line), using 3-dimensional nonlinear Finite Element (FE) model. The result from current study would assist assurance of systematic stability of Zip-Line.

Design of Walking Beam Pendle Axle Suspension System

This paper deals with design of walking beam pendel axle suspension system. This axles and suspension systems are mainly required for transportation of heavy duty and Over Dimension Consignment (ODC) cargo, which is exceeding legal limit in terms of length, width and height. Presently, in Indian transportation industry, ODC movement growth rate has increased in transportation of bridge sections (pre-cast beams), transformers, heavy machineries, boilers, gas turbines, windmill blades etc. However, current Indian standard road transport vehicles are facing lot of service and maintenance issues due to non availability of suitable axle and suspension to carry the ODC cargoes. This in turn will lead to increased number of road accidents, bridge collapse and delayed deliveries, which finally result in higher operating cost. Understanding these requirements, this work was carried out. These axles and suspensions are designed for optimum self – weight with maximum payload carrying capacity with better road stability.

Computation of Global Voltage Stability Margin in a Practical Power Network Incorporating FACTS in the OPF Frame Work

This paper presents a methodology to assess the voltage stability status combined with optimal power flow technique using an instantaneous two-bus equivalent model of power system incorporating static var compensator (SVC) and thyristor controlled series compensator (TCSC) controllers. There by, a generalized global voltage stability indicator being developed has been applied to a robust practical Indian Eastern Grid 203-bus system. Simulation results have proved that the proposed methodology is promising to assess voltage stability of any power system at any operating point in global scenario. Voltage stability augmentation with the application of SVC at the weakest bus and TCSC at critical line connected to the weakest bus is compared with the system having no compensation. In the proposed network equivalent model the generators have been modeled more accurately considering economic criteria.