Analysis of Driver Point of Regard Determinations with Eye-Gesture Templates Using Receiver Operating Characteristic

An Advance Driver Assistance System (ADAS) is a computer system on board a vehicle which is used to reduce the risk of vehicular accidents by monitoring factors relating to the driver, vehicle and environment and taking some action when a risk is identified. Much work has been done on assessing vehicle and environmental state but there is still comparatively little published work that tackles the problem of driver state. Visual attention is one such driver state. In fact, some researchers claim that lack of attention is the main cause of accidents as factors such as fatigue, alcohol or drug use, distraction and speeding all impair the driver-s capacity to pay attention to the vehicle and road conditions [1]. This seems to imply that the main cause of accidents is inappropriate driver behaviour in cases where the driver is not giving full attention while driving. The work presented in this paper proposes an ADAS system which uses an image based template matching algorithm to detect if a driver is failing to observe particular windscreen cells. This is achieved by dividing the windscreen into 24 uniform cells (4 rows of 6 columns) and matching video images of the driver-s left eye with eye-gesture templates drawn from images of the driver looking at the centre of each windscreen cell. The main contribution of this paper is to assess the accuracy of this approach using Receiver Operating Characteristic analysis. The results of our evaluation give a sensitivity value of 84.3% and a specificity value of 85.0% for the eye-gesture template approach indicating that it may be useful for driver point of regard determinations.

Performance Analysis of MC-SS for the Indoor BPLC Systems

power-line networks are promise infrastructure for broadband services provision to end users. However, the network performance is affected by stochastic channel changing which is due to load impedances, number of branches and branched line lengths. It has been proposed that multi-carrier modulations techniques such as orthogonal frequency division multiplexing (OFDM), Multi-Carrier Spread Spectrum (MC-SS), wavelet OFDM can be used in such environment. This paper investigates the performance of different indoor topologies of power-line networks that uses MC-SS modulation scheme.It is observed that when a branch is added in the link between sending and receiving end of an indoor channel an average of 2.5dB power loss is found. In additional, when the branch is added at a node an average of 1dB power loss is found. Additionally when the terminal impedances of the branch change from line characteristic impedance to impedance either higher or lower values the channel performances were tremendously improved. For example changing terminal load from characteristic impedance (85 .) to 5 . the signal to noise ratio (SNR) required to attain the same performances were decreased from 37dB to 24dB respectively. Also, changing the terminal load from channel characteristic impedance (85 .) to very higher impedance (1600 .) the SNR required to maintain the same performances were decreased from 37dB to 23dB. The result concludes that MC-SS performs better compared with OFDM techniques in all aspects and especially when the channel is terminated in either higher or lower impedances.

An Artificial Immune System for a Multi Agent Robotics System

This paper explores an application of an adaptive learning mechanism for robots based on the natural immune system. Most of the research carried out so far are based either on the innate or adaptive characteristics of the immune system, we present a combination of these to achieve behavior arbitration wherein a robot learns to detect vulnerable areas of a track and adapts to the required speed over such portions. The test bed comprises of two Lego robots deployed simultaneously on two predefined near concentric tracks with the outer robot capable of helping the inner one when it misaligns. The helper robot works in a damage-control mode by realigning itself to guide the other robot back onto its track. The panic-stricken robot records the conditions under which it was misaligned and learns to detect and adapt under similar conditions thereby making the overall system immune to such failures.

Drop Impact on a Vibrated, Heated Surface: Towards a Potential New Way of Elaborating Nuclear Fuel from Gel Microspheres

The gel-supported precipitation (GSP) process can be used to make spherical particles (spherules) of nuclear fuel, particularly for very high temperature reactors (VHTR) and even for implementing the process called SPHEREPAC. In these different cases, the main characteristics are the sphericity of the particles to be manufactured and the control over their grain size. Nonetheless, depending on the specifications defined for these spherical particles, the GSP process has intrinsic limits, particularly when fabricating very small particles. This paper describes the use of secondary fragmentation (water, water/PVA and uranyl nitrate) on solid surfaces under varying temperature and vibration conditions to assess the relevance of using this new technique to manufacture very small spherical particles by means of a modified GSP process. The fragmentation mechanisms are monitored and analysed, before the trends for its subsequent optimised application are described.

Services and Applications for Smart Office Environments - A Survey of State-of-the-Art Usage Scenarios

This paper reports on a survey of state-of-the-art application scenarios for smart office environments. Based on an analysis of ongoing research activities and industry projects, functionalities and services of future office systems are extracted. In a second step, these results are used to identify the key characteristics of emerging products.

Leaching Characteristics of Upgraded Copper Flotation Tailings

The copper flotation tailings from Konkola Copper mine in Nchanga, Zambia were used in the study. The purpose of this study was to determine the leaching characteristics of the tailings material prior and after the physical beneficiation process is employed. The Knelson gravity concentrator (KC-MD3) was used for the beneficiation process. The copper leaching efficiencies and impurity co-extraction percentages in both the upgraded and the raw feed material were determined at different pH levels and temperature. It was observed that the copper extraction increased with an increase in temperature and a decrease in pH levels. In comparison to the raw feed sample, the upgraded sample reported a maximum copper extraction of 69% which was 9%, higher than raw feed % extractions. The impurity carry over was reduced from 18% to 4 % on the upgraded sample. The reduction in impurity co-extraction was as a result of the removal of the reactive gangue elements during the upgrading process, this minimized the number of side reaction occurring during leaching.

Household Indebtedness Risks in the Czech Republic

In the past 20 years the economy of the Czech Republic has experienced substantial changes. In the 1990s the development was affected by the transformation which sought to establish the right conditions for privatization and creation of elementary market relations. In the last decade the characteristic elements such as private ownership and corresponding institutional framework have been strengthened. This development was marked by the accession of the Czech Republic to the EU. The Czech Republic is striving to reduce the difference between its level of economic development and the quality of institutional framework in comparison with other developed countries. The process of finding the adequate solutions has been hampered by the negative impact of the world financial crisis on the Czech Republic and the standard of living of its inhabitants. This contribution seeks to address the question of whether and to which extent the economic development of the transitive Czech economy is affected by the change in behaviour of households and their tendency to consumption, i.e. in the sense of reduction or increase in demand for goods and services. It aims to verify whether the increasing trend of household indebtedness and decreasing trend of saving pose a significant risk in the Czech Republic. At a general level the analysis aims to contribute to finding an answer to the question of whether the debt increase of Czech households is connected to the risk of "eating through" the borrowed money and whether Czech households risk falling into a debt trap. In addition to household indebtedness risks in the Czech Republic the analysis will focus on identification of specifics of the transformation phase of the Czech economy in comparison with the EU countries, or selected OECD countries.

Performance Characteristics of a Closed Circuit Cooling Tower with Multi Path

The experimental thermal performance of two heat exchangers in closed-wet cooling tower (CWCT) was investigated in this study. The test sections are heat exchangers which have multi path that is used as the entrance of cooling water and are consisting of bare-type copper tubes between 15.88mm and 19.05mm. The process fluids are the cooling water that flows from top part of heat exchanger to bottom side in the inner side of tube, and spray water that flows gravitational direction in the outer side of it. Air contacts its outer side of that as it counterflows. Heat and mass transfer coefficients and cooling capacity were calculated with variations of process fluids, multi path and different diameter tubes to figure out the performance of characteristics of CWCT. The main results were summarized as follows: The results show this experiment is reliable with values of heat and mass transfer coefficients comparing to values of correlations. Heat and mass transfer coefficients and cooling capacity of two paths are higher than these with one path using 15.88 and 19.05mm tubes. Cooling capacity per unit volume with 15.88mm tube using one and two paths are higher than 19.05mm tube due to increase of surface area per unit volume.

Highly Efficient White Light-emitting Diodes Based on Layered Quantum Dot-Phosphor Nanocomposites as Converting Materials

This paper reports on the enhanced photoluminescence (PL) of nanocomposites through the layered structuring of phosphor and quantum dot (QD). Green phosphor of Sr2SiO4:Eu, red QDs of CdSe/CdS/CdZnS/ZnS core-multishell, and thermo-curable resin were used for this study. Two kinds of composite (layered and mixed) were prepared, and the schemes for optical energy transfer between QD and phosphor were suggested and investigated based on PL decay characteristics. It was found that the layered structure is more effective than the mixed one in the respects of PL intensity, PL decay and thermal loss. When this layered nanocomposite (QDs on phosphor) is used to make white light emitting diode (LED), the brightness is increased by 37 %, and the color rendering index (CRI) value is raised to 88.4 compared to the mixed case of 80.4.

A Distributed Weighted Cluster Based Routing Protocol for Manets

Mobile ad-hoc networks (MANETs) are a form of wireless networks which do not require a base station for providing network connectivity. Mobile ad-hoc networks have many characteristics which distinguish them from other wireless networks which make routing in such networks a challenging task. Cluster based routing is one of the routing schemes for MANETs in which various clusters of mobile nodes are formed with each cluster having its own clusterhead which is responsible for routing among clusters. In this paper we have proposed and implemented a distributed weighted clustering algorithm for MANETs. This approach is based on combined weight metric that takes into account several system parameters like the node degree, transmission range, energy and mobility of the nodes. We have evaluated the performance of proposed scheme through simulation in various network situations. Simulation results show that proposed scheme outperforms the original distributed weighted clustering algorithm (DWCA).

Rheological and Thermomechanical Properties of Graphene/ABS/PP Nanocomposites

In the present study, the incorporation of graphene into blends of acrylonitrile-butadiene-styrene terpolymer with polypropylene (ABS/PP) was investigated focusing on the improvement of their thermomechanical characteristics and the effect on their rheological behavior. The blends were prepared by melt mixing in a twin-screw extruder and were characterized by measuring the MFI as well as by performing DSC, TGA and mechanical tests. The addition of graphene to ABS/PP blends tends to increase their melt viscosity, due to the confinement of polymer chains motion. Also, graphene causes an increment of the crystallization temperature (Tc), especially in blends with higher PP content, because of the reduction of surface energy of PP nucleation, which is a consequence of the attachment of PP chains to the surface of graphene through the intermolecular CH-π interaction. Moreover, the above nanofiller improves the thermal stability of PP and increases the residue of thermal degradation at all the investigated compositions of blends, due to the thermal isolation effect and the mass transport barrier effect. Regarding the mechanical properties, the addition of graphene improves the elastic modulus, because of its intrinsic mechanical characteristics and its rigidity, and this effect is particularly strong in the case of pure PP.

Supply Chain Modeling and Improving Manufacturing Industry in Developing Countries: A Research Agenda

This paper presents a research agenda on the SCOR model adaptation. SCOR model is designated to measure supply chain performance and logistics impact across the boundaries of individual organizations. It is at its growing stage of its life cycle and is enjoying the leverage of becoming the industry standard. The SCOR model has been developed and used widely in developed countries context. This research focuses on the SCOR model adaptation for the manufacturing industry in developing countries. With a necessary understanding of the characteristics, difficulties and problems of the manufacturing industry in developing countries- supply chain; consequently, we will try to designs an adapted model with its building blocks: business process model, performance measures and best practices.

GSM Position Tracking using a Kalman Filter

GSM has undoubtedly become the most widespread cellular technology and has established itself as one of the most promising technology in wireless communication. The next generation of mobile telephones had also become more powerful and innovative in a way that new services related to the user-s location will arise. Other than the 911 requirements for emergency location initiated by the Federal Communication Commission (FCC) of the United States, GSM positioning can be highly integrated in cellular communication technology for commercial use. However, GSM positioning is facing many challenges. Issues like accuracy, availability, reliability and suitable cost render the development and implementation of GSM positioning a challenging task. In this paper, we investigate the optimal mobile position tracking means. We employ an innovative scheme by integrating the Kalman filter in the localization process especially that it has great tracking characteristics. When tracking in two dimensions, Kalman filter is very powerful due to its reliable performance as it supports estimation of past, present, and future states, even when performing in unknown environments. We show that enhanced position tracking results is achieved when implementing the Kalman filter for GSM tracking.

Regeneration of Spent Catalysts with Ozone

This study investigates the in-situ regeneration of deactivated Pt-Pd catalyst in a laboratory-scale catalysis reactor. Different regeneration conditions are tested and the activity and characteristics of regenerated catalysts are analyzed. Experimental results show that the conversion efficiencies of C3H6 by different regenerated Pt-Pd catalysts were significantly improved from 77%, 55% and 41% to 86%, 98% and 99%, respectively. The best regeneration conditions was 52ppm ozone, 500oC, and 10min. Regeneration temperature has more influences than ozone concentration and regeneration time. With the comparisons of characteristics of deactivated catalyst and regenerated catalyst, the major poison species (carbon, metals, chloride, and sulfate) on the spent catalysts can be effectively removed by ozone regeneration. 

Minimization of Switching Losses in Cascaded Multilevel Inverters Using Efficient Sequential Switching Hybrid-Modulation Techniques

This paper presents two different sequential switching hybrid-modulation strategies and implemented for cascaded multilevel inverters. Hybrid modulation strategies represent the combinations of Fundamental-frequency pulse width modulation (FFPWM) and Multilevel sinusoidal-modulation (MSPWM) strategies, and are designed for performance of the well-known Alternative Phase opposition disposition (APOD), Phase shifted carrier (PSC). The main characteristics of these modulations are the reduction of switching losses with good harmonic performance, balanced power loss dissipation among the devices with in a cell, and among the series-connected cells. The feasibility of these modulations is verified through spectral analysis, power loss analysis and simulation.

A Study on the Performance Characteristics of Variable Valve for Reverse Continuous Damper

Nowadays, a passenger car suspension must has high performance criteria with light weight, low cost, and low energy consumption. Pilot controlled proportional valve is designed and analyzed to get small pressure change rate after blow-off, and to get a fast response of the damper, a reverse damping mechanism is adapted. The reverse continuous variable damper is designed as a HS-SH damper which offers good body control with reduced transferred input force from the tire, compared with any other type of suspension system. The damper structure is designed, so that rebound and compression damping forces can be tuned independently, of which the variable valve is placed externally. The rate of pressure change with respect to the flow rate after blow-off becomes smooth when the fixed orifice size increases, which means that the blow-off slope is controllable using the fixed orifice size. Damping forces are measured with the change of the solenoid current at the different piston velocities to confirm the maximum hysteresis of 20 N, linearity, and variance of damping force. The damping force variance is wide and continuous, and is controlled by the spool opening, of which scheme is usually adapted in proportional valves. The reverse continuous variable damper developed in this study is expected to be utilized in the semi-active suspension systems in passenger cars after its performance and simplicity of the design is confirmed through a real car test.

Influence of Paralleled Capacitance Effect in Well-defined Multiple Value Logical Level System with Active Load

Three similar negative differential resistance (NDR) profiles with both high peak to valley current density ratio (PVCDR) value and high peak current density (PCD) value in unity resonant tunneling electronic circuit (RTEC) element is developed in this paper. The PCD values and valley current density (VCD) values of the three NDR curves are all about 3.5 A and 0.8 A, respectively. All PV values of NDR curves are 0.40 V, 0.82 V, and 1.35 V, respectively. The VV values are 0.61 V, 1.07 V, and 1.69 V, respectively. All PVCDR values reach about 4.4 in three NDR curves. The PCD value of 3.5 A in triple PVCDR RTEC element is better than other resonant tunneling devices (RTD) elements. The high PVCDR value is concluded the lower VCD value about 0.8 A. The low VCD value is achieved by suitable selection of resistors in triple PVCDR RTEC element. The low PV value less than 1.35 V possesses low power dispersion in triple PVCDR RTEC element. The designed multiple value logical level (MVLL) system using triple PVCDR RTEC element provides equidistant logical level. The logical levels of MVLL system are about 0.2 V, 0.8 V, 1.5 V, and 2.2 V from low voltage to high voltage and then 2.2 V, 1.3 V, 0.8 V, and 0.2 V from high voltage back to low voltage in half cycle of sinusoid wave. The output level of four levels MVLL system is represented in 0.3 V, 1.1 V, 1.7 V, and 2.6 V, which satisfies the NMP condition of traditional two-bit system. The remarkable logical characteristic of improved MVLL system with paralleled capacitor are with four significant stable logical levels about 220 mV, 223 mV, 228 mV, and 230 mV. The stability and articulation of logical levels of improved MVLL system are outstanding. The average holding time of improved MVLL system is approximately 0.14 μs. The holding time of improved MVLL system is fourfold than of basic MVLL system. The function of additional capacitor in the improved MVLL system is successfully discovered.

Analysis of S.P.O Techniques for Prediction of Dynamic Behavior of the Plate

In most cases, it is considerably difficult to directly measure structural vibration with a lot of sensors because of complex geometry, time and equipment cost. For this reason, this paper deals with the problem of locating sensors on a plate model by four advanced sensor placement optimization (S.P.O) techniques. It also suggests the evaluation index representing the characteristic of orthogonal between each of natural modes. The index value provides the assistance to selecting of proper S.P.O technique and optimal positions for monitoring of dynamic systems without the experiment.

EASEL: Evaluation of Algorithmic Skills in an Environment Learning

This paper attempts to explore a new method to improve the teaching of algorithmic for beginners. It is well known that algorithmic is a difficult field to teach for teacher and complex to assimilate for learner. These difficulties are due to intrinsic characteristics of this field and to the manner that teachers (the majority) apprehend its bases. However, in a Technology Enhanced Learning environment (TEL), assessment, which is important and indispensable, is the most delicate phase to implement, for all problems that generate (noise...). Our objective registers in the confluence of these two axes. For this purpose, EASEL focused essentially to elaborate an assessment approach of algorithmic competences in a TEL environment. This approach consists in modeling an algorithmic solution according to basic and elementary operations which let learner draw his/her own step with all autonomy and independently to any programming language. This approach assures a trilateral assessment: summative, formative and diagnostic assessment.

No-Reference Image Quality Assessment using Blur and Noise

Assessment for image quality traditionally needs its original image as a reference. The conventional method for assessment like Mean Square Error (MSE) or Peak Signal to Noise Ratio (PSNR) is invalid when there is no reference. In this paper, we present a new No-Reference (NR) assessment of image quality using blur and noise. The recent camera applications provide high quality images by help of digital Image Signal Processor (ISP). Since the images taken by the high performance of digital camera have few blocking and ringing artifacts, we only focus on the blur and noise for predicting the objective image quality. The experimental results show that the proposed assessment method gives high correlation with subjective Difference Mean Opinion Score (DMOS). Furthermore, the proposed method provides very low computational load in spatial domain and similar extraction of characteristics to human perceptional assessment.