People Critical Success Factors of IT/IS Implementation: Malaysian Perspectives

Implementing Information Technology/ Information System (IT/IS) is critical for every industry as its potential benefits have been to motivate many industries including the Malaysian construction industry to invest in it. To successfully implement IT/IS has become the major concern for every organisation. Identifying the critical success factors (CSFs) has become the main agenda for researchers, academicians and practitioners due to the wide number of failures reported. This research paper seeks to identify the CSFs that influence the successful implementation of IT/IS in construction industry in Malaysia. Limited factors relating to people issue will be highlighted here to showcase some as it becomes one of the major contributing factors to the failure. Three (3) organisations have participated in this study. Semi-structured interviews are employed as they offer sufficient flexibility to ensure that all relevant factors are covered. Several key issues contributing to successful implementations of IT/IS are identified. The results of this study reveal that top management support, communication, user involvement, IT staff roles and responsibility, training/skills, leader/ IT Leader, organisation culture, knowledge/ experience, motivation, awareness, focus and ambition, satisfaction, teamwork/ collaboration, willingness to change, attitude, commitment, management style, interest in IT, employee behaviour towards collaborative environment, trust, interpersonal relationship, personal characteristic and competencies are significantly associated with the successful implementations of IT/IS. It is anticipated that this study will create awareness and contribute to a better understanding amongst construction industry players and will assist them to successfully implement IT/IS.

Introduce the FWA in the Band 3300-3400 MHz

This paper gives a study about forging solution to deploy the fixed wireless access (FWA) in the band 3300-3400MHz instead of 3400-3600MHz to eschew the harmful interference between from the FWA towards fixed satellite services receiver presented in this band. The impact of FWA services toward the FSS and the boundaries of spectrum emission mask had been considered to calculate the possible Guard band required in this case. In addition, supplementary separation distance added to improve the coexistence between the two adjacent bands. Simulation had been done using Matlab software base on ITU models reliance on the most popular specification used for the tropical weather countries. Review the current problem of interference between two systems and some mitigation techniques which adopted in Malaysia as a case study is a part of this research.

Impacts of Climate Change under the Threat of Global Warming for an Agricultural Watershed of the Kangsabati River

The effects of global warming on India vary from the submergence of low-lying islands and coastal lands to the melting of glaciers in the Indian Himalayas, threatening the volumetric flow rate of many of the most important rivers of India and South Asia. In India, such effects are projected to impact millions of lives. As a result of ongoing climate change, the climate of India has become increasingly volatile over the past several decades; this trend is expected to continue. Climate change is one of the most important global environmental challenges, with implications for food production, water supply, health, energy, etc. Addressing climate change requires a good scientific understanding as well as coordinated action at national and global level. The climate change issue is part of the larger challenge of sustainable development. As a result, climate policies can be more effective when consistently embedded within broader strategies designed to make national and regional development paths more sustainable. The impact of climate variability and change, climate policy responses, and associated socio-economic development will affect the ability of countries to achieve sustainable development goals. A very well calibrated Soil and Water Assessment Tool (R2 = 0.9968, NSE = 0.91) was exercised over the Khatra sub basin of the Kangsabati River watershed in Bankura district of West Bengal, India, in order to evaluate projected parameters for agricultural activities. Evapotranspiration, Transmission Losses, Potential Evapotranspiration and Lateral Flow to reach are evaluated from the years 2041-2050 in order to generate a picture for sustainable development of the river basin and its inhabitants. India has a significant stake in scientific advancement as well as an international understanding to promote mitigation and adaptation. This requires improved scientific understanding, capacity building, networking and broad consultation processes. This paper is a commitment towards the planning, management and development of the water resources of the Kangsabati River by presenting detailed future scenarios of the Kangsabati river basin, Khatra sub basin, over the mentioned time period. India-s economy and societal infrastructures are finely tuned to the remarkable stability of the Indian monsoon, with the consequence that vulnerability to small changes in monsoon rainfall is very high. In 2002 the monsoon rains failed during July, causing profound loss of agricultural production with a drop of over 3% in India-s GDP. Neither the prolonged break in the monsoon nor the seasonal rainfall deficit was predicted. While the general features of monsoon variability and change are fairly well-documented, the causal mechanisms and the role of regional ecosystems in modulating the changes are still not clear. Current climate models are very poor at modelling the Asian monsoon: this is a challenging and critical region where the ocean, atmosphere, land surface and mountains all interact. The impact of climate change on regional ecosystems is likewise unknown. The potential for the monsoon to become more volatile has major implications for India itself and for economies worldwide. Knowledge of future variability of the monsoon system, particularly in the context of global climate change, is of great concern for regional water and food security. The major findings of this paper were that of all the chosen projected parameters, transmission losses, soil water content, potential evapotranspiration, evapotranspiration and lateral flow to reach, display an increasing trend over the time period of years 2041- 2050.

Numerical Studies of Galerkin-type Time-discretizations Applied to Transient Convection-diffusion-reaction Equations

We deal with the numerical solution of time-dependent convection-diffusion-reaction equations. We combine the local projection stabilization method for the space discretization with two different time discretization schemes: the continuous Galerkin-Petrov (cGP) method and the discontinuous Galerkin (dG) method of polynomial of degree k. We establish the optimal error estimates and present numerical results which shows that the cGP(k) and dG(k)- methods are accurate of order k +1, respectively, in the whole time interval. Moreover, the cGP(k)-method is superconvergent of order 2k and dG(k)-method is of order 2k +1 at the discrete time points. Furthermore, the dependence of the results on the choice of the stabilization parameter are discussed and compared.

Growth Effects of Caffeic Acid and Thioglycolic Acid Modified Chitosans in U937 Cells

Chitosan is a biopolymer composed of glucosamine and N-acetyl glucosamine. Solubility and viscosity pose problems in some applications. These problems can be overcome with unique modifications. In this study, firstly, chitosan was modified by caffeic acid and thioglycolic acid, separately. Then, growing effects of these modified polymers was observed in U937 cell line. Caffeic acid is a phenolic compound and its modifications act carcinogenic inhibitors in drugs. Thiolated chitosans are commonly being used for drugdelivery systems in various routes, because of enhancing mucoadhesiveness property. U937 cell line was used model cell for leukaemia. Modifications were achieved by 1 – 15 % binding range. Increasing binding ratios showed higher radical-scavenging activity and reducing cell growth, in compared to native chitosan. Caffeic acid modifications showed higher radical-scavenging activity than thiolated chitosans at the same concentrations. Caffeic acid and thioglycolic acid modifications inhibited growth of U937, effectively.

Effect of Variable viscosity on Convective Heat Transfer along an Inclined Plate Embedded in Porous Medium with an Applied Magnetic Field

The flow and heat transfer characteristics for natural convection along an inclined plate in a saturated porous medium with an applied magnetic field have been studied. The fluid viscosity has been assumed to be an inverse function of temperature. Assuming temperature vary as a power function of distance. The transformed ordinary differential equations have solved by numerical integration using Runge-Kutta method. The velocity and temperature profile components on the plate are computed and discussed in detail for various values of the variable viscosity parameter, inclination angle, magnetic field parameter, and real constant (λ). The results have also been interpreted with the aid of tables and graphs. The numerical values of Nusselt number have been calculated for the mentioned parameters.

Experimental Investigation of Vessel Volume and Equivalence Ratio in Vented Gas

An experiment of vented gas explosions involving two different cylinder vessel volumes (0.2 and 0.0065 m3) was reported, with equivalence ratio (Φ) ranged from 0.3 to 1.6. Both vessels were closed at the rear end and fitted at the other side with a circular orifice plate that gives a constant vent coefficient (K =Av/V2/3) of 16.4. It was shown that end ignition gives higher overpressures than central ignition, even though most of the published work on venting uses central ignition. For propane and ethylene, it is found that rich mixtures gave the highest overpressures and these mixtures are not considered in current vent design guidance; which the guideline is based on mixtures giving the maximum flame temperature. A strong influence of the vessel volume at constant K was found for methane, propane, ethylene and hydrogen-air explosions. It can be concluded that self- acceleration of the flame, which is dependent on the distance of a flame from the ignition and the ‘suction’ at the vent opening are significant factors affecting the vent flow during explosion development in vented gas explosion. This additional volume influence on vented explosions is not taken into account in the current vent design guidance.

Robust On-Body Communications using Creeping Wave: Methodology and Analysis

In this paper methodology to exploit creeping wave for body area network BAN communication reliability are described. Creeping wave propagation effects are visualized & analyzed. During this work Dipole, IA antennas various antennas were redesigned using existing designs and their propagation characteristics were verified for optimum performance when used on BANs. These antennas were then applied on body shapes-including rectangular, spherical and cylindrical so that all the effects of actual human body can be taken nearly into account. Parametric simulation scheme was devised so that on Body channel characterization can be visualized at front, curved and back region. In the next phase multiple inputs multiple output MIMO scheme was introduced where virtual antennas were used in order to diminish the effects of antennas on the propagation of waves. Results were, extracted and analyzed at different heights. Finally based on comparative measurement and analysis it was concluded that on body propagation can be exploited to gain spatial diversity.

An Analysis of Collapse Mechanism of Thin- Walled Circular Tubes Subjected to Bending

Circular tubes have been widely used as structural members in engineering application. Therefore, its collapse behavior has been studied for many decades, focusing on its energy absorption characteristics. In order to predict the collapse behavior of members, one could rely on the use of finite element codes or experiments. These tools are helpful and high accuracy but costly and require extensive running time. Therefore, an approximating model of tubes collapse mechanism is an alternative for early step of design. This paper is also aimed to develop a closed-form solution of thin-walled circular tube subjected to bending. It has extended the Elchalakani et al.-s model (Int. J. Mech. Sci.2002; 44:1117-1143) to include the rate of energy dissipation of rolling hinge in the circumferential direction. The 3-D geometrical collapse mechanism was analyzed by adding the oblique hinge lines along the longitudinal tube within the length of plastically deforming zone. The model was based on the principal of energy rate conservation. Therefore, the rates of internal energy dissipation were calculated for each hinge lines which are defined in term of velocity field. Inextensional deformation and perfect plastic material behavior was assumed in the derivation of deformation energy rate. The analytical result was compared with experimental result. The experiment was conducted with a number of tubes having various D/t ratios. Good agreement between analytical and experiment was achieved.

The Use of Project to Enhance Writing Skill

This paper explores the use of project work in a content-based instruction in a Rajabhat University, a teacher college, where student teachers are instructed to perform teaching roles mainly in basic education level. Its aim is to link theory to practice, and to help language teachers maximize the full potential of project work for genuine communication and give real meaning to writing activity. Two research questions are formulated to guide this study: a) What is the academic achievement of the students- writing skill against the 70% attainment target after the use of project to enhance the skill? and b) To what degree is the development of the students- writing skills during the course of project to enhance the skill? The sample of the study comprised of 38 fourth-year English major students. The data was collected by means of achievement test, student writing works, and project diary. The scores in the summative achievement test were analyzed by mean score, standard deviation, and t-test. Project diary serves as students- record of the language acquired during the project. List of structures and vocabulary noted in the diary has shown students- ability to attend to, recognize, and focus on meaningful patterns of language forms.

Climatic Factors Affecting Influenza Cases in Southern Thailand

This study investigated climatic factors associated with influenza cases in Southern Thailand. The main aim for use regression analysis to investigate possible causual relationship of climatic factors and variability between the border of the Andaman Sea and the Gulf of Thailand. Southern Thailand had the highest Influenza incidences among four regions (i.e. north, northeast, central and southern Thailand). In this study, there were 14 climatic factors: mean relative humidity, maximum relative humidity, minimum relative humidity, rainfall, rainy days, daily maximum rainfall, pressure, maximum wind speed, mean wind speed, sunshine duration, mean temperature, maximum temperature, minimum temperature, and temperature difference (i.e. maximum – minimum temperature). Multiple stepwise regression technique was used to fit the statistical model. The results indicated that the mean wind speed and the minimum relative humidity were positively associated with the number of influenza cases on the Andaman Sea side. The maximum wind speed was positively associated with the number of influenza cases on the Gulf of Thailand side.

Adsorption of Inorganic Salt by Granular Activated Carbon and Related Prediction Models

In recent years, the underground water sources in southern Taiwan have become salinized because of saltwater intrusions. This study explores the adsorption characteristics of activated carbon on salinizing inorganic salts using isothermal adsorption experiments and provides a model analysis. The temperature range for the isothermal adsorption experiments ranged between 5 to 45 ℃, and the amount adsorbed varied between 28.21 to 33.87 mg/g. All experimental data of adsorption can be fitted to both the Langmuir and the Freundlich models. The thermodynamic parameters for per chlorate onto granular activated carbon were calculated as -0.99 to -1.11 kcal/mol for DG°, -0.6 kcal/mol for DH°, and 1.21 to 1.84 kcal/mol for DS°. This shows that the adsorption process of granular activated carbon is spontaneously exothermic. The observation of adsorption behaviors under low ionic strength, low pH values, and low temperatures is beneficial to the adsorption removal of perchlorate with granular activated carbon.

Novel Use of a Quality Assurance Tool for Integrating Technology to HSE

The product development process (PDP) in the Technology group plays a very important role in the launch of any product. While a manufacturing process encourages the use of certain measures to reduce health, safety and environmental (HSE) risks on the shop floor, the PDP concentrates on the use of Geometric Dimensioning and Tolerancing (GD&T) to develop a flawless design. Furthermore, PDP distributes and coordinates activities between different departments such as marketing, purchasing, and manufacturing. However, it is seldom realized that PDP makes a significant contribution to developing a product that reduces HSE risks by encouraging the Technology group to use effective GD&T. The GD&T is a precise communication tool that uses a set of symbols, rules, and definitions to mathematically define parts to be manufactured. It is a quality assurance method widely used in the oil and gas sector. Traditionally it is used to ensure the interchangeability of a part without affecting its form, fit, and function. Parts that do not meet these requirements are rejected during quality audits. This paper discusses how the Technology group integrates this quality assurance tool into the PDP and how the tool plays a major role in helping the HSE department in its goal towards eliminating HSE incidents. The PDP involves a thorough risk assessment and establishes a method to address those risks during the design stage. An illustration shows how GD&T helped reduce safety risks by ergonomically improving assembling operations. A brief discussion explains how tolerances provided on a part help prevent finger injury. This tool has equipped Technology to produce fixtures, which are used daily in operations as well as manufacturing. By applying GD&T to create good fits, HSE risks are mitigated for operating personnel. Both customers and service providers benefit from reduced safety risks.

Porcelain Insulator Performance under Different Condition of Installation around Aligarh

Modern Society is strongly dependent on a reliable power supply. The availability of cheap and reliable supply of electrical energy is an indicator of societal welfare. Uninterrupted reliable operation of a modern power system depends to a great extent on reliable and satisfactory performance of insulators under different environmental conditions. This paper reports result of natural pollution tests that have been done at sites around city of Aligarh (India). Flashover voltage per insulation distance (FOVUID) of porcelain disc insulator for different pH values, ESDD has been recorded for proper correlation between electrical and chemical parameters. The pH of the contaminants has been suggested to be an effective pollution severity indicator and may be used as a diagnostic parameter for proper maintenance of porcelain insulators.

Nanobiocomposites with Enhanced Cell Proliferation and Improved Mechanical Properties Based on Organomodified-Nanoclay and Silicone Rubber

Bionanotechnology deals with nanoscopic interactions between nanostructured materials and biological systems. Polymer nanocomposites with optimized biological activity have attracted great attention. Nanoclay is considered as reinforcing nanofiller in manufacturing of high performance nanocomposites. In current study, organomodified-nanoclay with negatively charged silicate layers was incorporated into biomedical grade silicone rubber. Nanoparticle loading has been tailored to enhance cell behavior. Addition of nanoparticles led to improved mechanical properties of substrate with enhanced strength and stiffness while no toxic effects was observed. Results indicated improved viability and proliferation of cells by addition of nanofillers. The improved mechanical properties of the matrix result in proper cell response through adjustment and arrangement of cytoskeletal fibers. Results can be applied in tissue engineering when enhanced substrates are required for improvement of cell behavior for in vivo applications.

Automatic Detection of Mass Type Breast Cancer using Texture Analysis in Korean Digital Mammography

In this study, we present an advanced detection technique for mass type breast cancer based on texture information of organs. The proposed method detects the cancer areas in three stages. In the first stage, the midpoints of mass area are determined based on AHE (Adaptive Histogram Equalization). In the second stage, we set the threshold coefficient of homogeneity by using MLE (Maximum Likelihood Estimation) to compute the uniformity of texture. Finally, mass type cancer tissues are extracted from the original image. As a result, it was observed that the proposed method shows an improved detection performance on dense breast tissues of Korean women compared with the existing methods. It is expected that the proposed method may provide additional diagnostic information for detection of mass-type breast cancer.

Hydrodynamic Processes in Bubbly Liquid Flow in Tubes and Nozzles

The hydrodynamic processes in bubbly liquid flowing in tubes and nozzles are studied theoretically and numerically. The principal regularities of non-stationary processes of boiling liquid outflow are established under conditions of experiments when the depressurization of a tube with high pressure inside occurs. The steady-state solution of bubbly liquid flow in the nozzle of round cross section with high pressure and temperature conditions inside bubbles is studied accounting for phase transition and chemical reactions.

Polyphenolic Profile and Antioxidant Activities of Nigella Sativa Seed Extracts In Vitro and In Vivo

Nigella sativa L. is an aromatic plant belonging to the family Ranunculaceae. It has been used traditionally, especially in the middle East and India, for the treatment of asthma, cough, bronchitis, headache, rheumatism, fever, influenza and eczema. Several biological activities have been reported in Nigella sativa seeds, including antioxidant. In this context we tried to estimate the antioxidant activity of various extracts prepared from Nigella sativa seeds, methanolic extract (ME), chloroformic extract (CE), hexanic extract (HE : fixed oil), ethyl acetate extract (EAE) water extract (WE). The Folin-Ciocalteu assay showed that CE and EAE contained high level of phenolic compounds 81.31 and 72.43μg GAE/mg of extract respectively. Similarly, the CE and EAE exhibited the highest DPPH radical scavenging activity, with IC50 values of 106.56μg/ml and 121.62μg/ml respectively. In addition, CE and HE showed the most scavenging activity against superoxide radical generated in the PMS-NADH-NBT system with respective IC50 values of 361.86 μg/ml and 371.80 μg/ml, which is comparable to the activity of the standard antioxidant BHT (344.59 μg/ml). Ferrous ion chelating capacity assay showed that WE, EAE and ME are the most active with 40.57, 39.70 and 22.02 mg EDTA-E/g of extract. The inhibition of linoleic acid/ß-carotene coupled oxidation was estimated by ßcarotene bleaching assay, this showed a highest relative antioxidant activity with CE and EAE (69.82% of inhibition). The antioxidant activities of the methanolic extract and the fixed oil are confirmed by an in vivo assay in mice, the daily oral administration of methanolic extract (500 and 800 mg/kg/day) and fixed oil (2 and 4 ml/kg/day) during 21 days, resulted in a significant enhancement of the blood total antioxidant capacity (measured by KRL test) and the plasmatic antioxidant capacity towards DPPH radical.

Natural Language Database Interface for Selection of Data Using Grammar and Parsing

Databases have become ubiquitous. Almost all IT applications are storing into and retrieving information from databases. Retrieving information from the database requires knowledge of technical languages such as Structured Query Language (SQL). However majority of the users who interact with the databases do not have a technical background and are intimidated by the idea of using languages such as SQL. This has led to the development of a few Natural Language Database Interfaces (NLDBIs). A NLDBI allows the user to query the database in a natural language. This paper highlights on architecture of new NLDBI system, its implementation and discusses on results obtained. In most of the typical NLDBI systems the natural language statement is converted into an internal representation based on the syntactic and semantic knowledge of the natural language. This representation is then converted into queries using a representation converter. A natural language query is translated to an equivalent SQL query after processing through various stages. The work has been experimented on primitive database queries with certain constraints.

Exploring the Customer Experiences in Bosphorus Zoo

The main purpose of this study is to explore current and possible customer experiences in Bosphorus Zoo. Since there is no previous research conducted on Turkish zoos- customer experiences, we conduct an exploratory research taking the form of depth interviews. Then, we group the experiences according to strategic experiential modules (sense, feel, think, act and relate).