Judicial Institutions in a Post-Conflict Society: Gaining Legitimacy through a Holistic Reform

This paper focuses on how judiciaries in post-conflict societies can gain legitimacy through reformation. Legitimacy plays a pivotal role in shaping people’s behavior to submit to the law and verifies the rightfulness of an organ for taking binding decisions. Among various dynamics, judicial independence, access to justice and behavioral changes of the judicial officials broadly contribute to legitimation of judiciary in general, and the courts in particular. Increasing independence of judiciary through reform limits, inter alia, government interference in judicial issues and protects basic rights of the citizens. Judicial independence does not only matter in institutional terms, individual independence also influences the impartiality and integrity of judges, which can be increased through education and better administration of justice. Finally, access to justice as an intertwined concept both at the legal and moral spectrum of judicial reform avails justice to the citizens and increases the level of public trust and confidence. Efficient legal decisions on fostering such elements through holistic reform create a rule of law atmosphere. Citizens neither accept an illegitimate judiciary nor do they trust its decisions. Lack of such tolerance and confidence deters the rule of law and thus, undermines the democratic development of a society.

A Comparison of Bias Among Relaxed Divisor Methods Using 3 Bias Measurements

The apportionment method is used by many countries, to calculate the distribution of seats in political bodies. For example, this method is used in the United States (U.S.) to distribute house seats proportionally based on the population of the electoral district. Famous apportionment methods include the divisor methods called the Adams Method, Dean Method, Hill Method, Jefferson Method and Webster Method. Sometimes the results from the implementation of these divisor methods are unfair and include errors. Therefore, it is important to examine the optimization of this method by using a bias measurement to figure out precise and fair results. In this research we investigate the bias of divisor methods in the U.S. Houses of Representatives toward large and small states by applying the Stolarsky Mean Method. We compare the bias of the apportionment method by using two famous bias measurements: the Balinski and Young measurement and the Ernst measurement. Both measurements have a formula for large and small states. The Third measurement however, which was created by the researchers, did not factor in the element of large and small states into the formula. All three measurements are compared and the results show that our measurement produces similar results to the other two famous measurements.

Reinforcement of Calcium Phosphate Cement with E-Glass Fibre

Calcium Phosphate Cement (CPC) due to its high bioactivity and optimum bioresorbability shows excellent bone regeneration capability. Despite it has limited applications as bone implant due to its macro-porous microstructure causing its poor mechanical strength. The reinforcement of apatitic CPCs with biocompatible fibre glass phase is an attractive area of research to improve upon its mechanical strength. Here, we study the setting behaviour of Si-doped and un-doped α tri calcium phosphate (α - TCP) based CPC and its reinforcement with addition of E-glass fibre. Alpha Tri calcium phosphate powders were prepared by solid state sintering of CaCO3 , CaHPO4 and Tetra Ethyl Ortho Silicate (TEOS) was used as silicon source to synthesize Si doped α-TCP powders. Both initial and final setting time of the developed cement was delayed because of Si addition. Crystalline phases of HA (JCPDS 9- 432), α-TCP (JCPDS 29-359) and β-TCP (JCPDS 9-169) were detected in the X-ray diffraction (XRD) pattern after immersion of CPC in simulated body fluid (SBF) for 0 hours to 10 days. As Si incorporation in the crystal lattice stabilized the TCP phase, Si doped CPC showed little slower rate of conversion into HA phase as compared to un-doped CPC. The SEM image of the microstructure of hardened CPC showed lower grain size of HA in un-doped CPC because of premature setting and faster hydrolysis of un-doped CPC in SBF as compared that in Si-doped CPC. Premature setting caused generation of micro and macro porosity in un-doped CPC structure which resulted in its lower mechanical strength as compared to that in Si-doped CPC. It was found that addition of 10 wt% of E-glass fibre into Si-doped α-TCP increased the average DTS of CPC from 8 MPa to 15 MPa as the fibres could resists the propagation of crack by deflecting the crack tip. Our study shows that biocompatible E-glass fibre in optimum proportion in CPC matrix can enhance the mechanical strength of CPC without affecting its biocompatibility. 

Aging Effect on Mechanical Behavior of Duplex Satinless Steel

Effect of alloying on the microstructure and mechanical properties of heat-resisting duplex stainless steel (DSS) for Mg production was investigated in this study. 25Cr-8Ni based DSS’s were cast into rectangular ingots of which the dimension was 350×350×100 mm3 . Nitrogen and Yttrium were added in the range within 0.3 in weight percent. Phase equilibrium was calculated using the FactSage®, thermodynamic software. Hot exposure, high temperature tensile and compression tests were conducted on the ingots at 1230oC, which is operation temperature employed for Mg production by Silico-thermic reduction. The steel with N and Y showed much higher strength than 310S alloy in both tensile and compression tests. By thermal exposition at 1230oC for 200 hrs, hardness of DSS containing N and Y was found to increase. Hot workability of the heat-resisting DSS was evaluated by employing hot rolling at 1230 oC. Hot shortness was observed in the ingot with N and found to disappear after addition of Y.

A Grid Synchronization Method Based on Adaptive Notch Filter for SPV System with Modified MPPT

This paper presents a grid synchronization technique based on adaptive notch filter for SPV (Solar Photovoltaic) system along with MPPT (Maximum Power Point Tracking) techniques. An efficient grid synchronization technique offers proficient detection of various components of grid signal like phase and frequency. It also acts as a barrier for harmonics and other disturbances in grid signal. A reference phase signal synchronized with the grid voltage is provided by the grid synchronization technique to standardize the system with grid codes and power quality standards. Hence, grid synchronization unit plays important role for grid connected SPV systems. As the output of the PV array is fluctuating in nature with the meteorological parameters like irradiance, temperature, wind etc. In order to maintain a constant DC voltage at VSC (Voltage Source Converter) input, MPPT control is required to track the maximum power point from PV array. In this work, a variable step size P & O (Perturb and Observe) MPPT technique with DC/DC boost converter has been used at first stage of the system. This algorithm divides the dPpv/dVpv curve of PV panel into three separate zones i.e. zone 0, zone 1 and zone 2. A fine value of tracking step size is used in zone 0 while zone 1 and zone 2 requires a large value of step size in order to obtain a high tracking speed. Further, adaptive notch filter based control technique is proposed for VSC in PV generation system. Adaptive notch filter (ANF) approach is used to synchronize the interfaced PV system with grid to maintain the amplitude, phase and frequency parameters as well as power quality improvement. This technique offers the compensation of harmonics current and reactive power with both linear and nonlinear loads. To maintain constant DC link voltage a PI controller is also implemented and presented in this paper. The complete system has been designed, developed and simulated using SimPower System and Simulink toolbox of MATLAB. The performance analysis of three phase grid connected solar photovoltaic system has been carried out on the basis of various parameters like PV output power, PV voltage, PV current, DC link voltage, PCC (Point of Common Coupling) voltage, grid voltage, grid current, voltage source converter current, power supplied by the voltage source converter etc. The results obtained from the proposed system are found satisfactory.

Extreme Temperature Forecast in Mbonge, Cameroon through Return Level Analysis of the Generalized Extreme Value (GEV) Distribution

In this paper, temperature extremes are forecast by employing the block maxima method of the Generalized extreme value(GEV) distribution to analyse temperature data from the Cameroon Development Corporation (C.D.C). By considering two sets of data (Raw data and simulated data) and two (stationary and non-stationary) models of the GEV distribution, return levels analysis is carried out and it was found that in the stationary model, the return values are constant over time with the raw data while in the simulated data, the return values show an increasing trend but with an upper bound. In the non-stationary model, the return levels of both the raw data and simulated data show an increasing trend but with an upper bound. This clearly shows that temperatures in the tropics even-though show a sign of increasing in the future, there is a maximum temperature at which there is no exceedence. The results of this paper are very vital in Agricultural and Environmental research.

Creep Behaviour of Heterogeneous Timber-UHPFRC Beams Assembled by Bonding: Experimental and Analytical Investigation

The purpose of this research was to investigate the creep behaviour of the heterogeneous Timber-UHPFRC beams. New developments have been done to further improve the structural performance, such as strengthening of the timber (glulam) beam by bonding composite material combine with an ultra-high performance fibre reinforced concrete (UHPFRC) internally reinforced with or without carbon fibre reinforced polymer (CFRP) bars. However, in the design of wooden structures, in addition to the criteria of strengthening and stiffness, deformability due to the creep of wood, especially in horizontal elements, is also a design criterion. Glulam, UHPFRC and CFRP may be an interesting composite mix to respond to the issue of creep behaviour of composite structures made of different materials with different rheological properties. In this paper, we describe an experimental and analytical investigation of the creep performance of the glulam-UHPFRC-CFRP beams assembled by bonding. The experimental investigations creep behaviour was conducted for different environments: in- and outside under constant loading for approximately a year. The measured results are compared with numerical ones obtained by an analytical model. This model was developed to predict the creep response of the glulam-UHPFRCCFRP beams based on the creep characteristics of the individual components. The results show that heterogeneous glulam-UHPFRC beams provide an improvement in both the strengthening and stiffness, and can also effectively reduce the creep deflection of wooden beams.

Effect of Robot Configuration Parameters, Masses and Friction on Painlevé Paradox for a Sliding Two-Link (P-R) Robot

For a rigid body sliding on a rough surface, a range of uncertainty or non-uniqueness of solution could be found, which is termed: Painlevé paradox. Painlevé paradox is the reason of a wide range of bouncing motion, observed during sliding of robotic manipulators on rough surfaces. In this research work, the existence of the paradox zone during the sliding motion of a two-link (P-R) robotic manipulator with a unilateral constraint is investigated. Parametric study is performed to investigate the effect of friction, link-length ratio, total height and link-mass ratio on the paradox zone.

Analyzing Current Transformers Saturation Characteristics for Different Connected Burden Using LabVIEW Data Acquisition Tool

Current transformers are an integral part of power system because it provides a proportional safe amount of current for protection and measurement applications. However, when the power system experiences an abnormal situation leading to huge current flow, then this huge current is proportionally injected to the protection and metering circuit. Since the protection and metering equipment’s are designed to withstand only certain amount of current with respect to time, these high currents pose a risk to man and equipment. Therefore, during such instances, the CT saturation characteristics have a huge influence on the safety of both man and equipment and on the reliability of the protection and metering system. This paper shows the effect of burden on the Accuracy Limiting factor/ Instrument security factor of current transformers and the change in saturation characteristics of the CT’s. The response of the CT to varying levels of overcurrent at different connected burden will be captured using the data acquisition software LabVIEW. Analysis is done on the real time data gathered using LabVIEW. Variation of current transformer saturation characteristics with changes in burden will be discussed.

Health-Related QOL of Motorists with Spinal Cord Injury in Japan

The Japanese version of the SF-36 has been employed to assess individuals’ health-related QOL (HRQOL). This study aimed to clarify the HRQOL of motorists with a spinal cord injury, in order to compare these individuals' SF-36 scores and national standard values. A total of 100 motorists with a spinal cord injury participated in this study. Participants’ HRQOL was evaluated using the Japanese version of the SF-36 (second edition). The score for each subscale was standardized based on data on the Japanese population. The average scores for NPF, NRP, NBP, NGH, NVT, NSF, NRE, and NMH were 10.9, 41.8, 45.9, 47.1, 46.1, 46.7, 46.0, and 47.4 points, respectively. Subjects showed significantly lower scores for NPF and NRP compared with national standard values, which were both ≤ 45.0 points, but relatively normal scores for the other items: NBP, NGH, NVT, NSF, NRE and NMH (> 45.0 points). The average scores for PCS, MCS and RCS were 21.9, 56.0, and 50.0 points, respectively. Subjects showed a significantly lower PCS score (≤ 20.0 points); however, the MCS score was higher (> 55.0 points) along with a relatively normal RCS score in these individuals (= 50.0 points).

Worm Gearing Design Improvement by Considering Varying Mesh Stiffness

A new approach has been developed to estimate the load share and distribution of worm gear drives, and to calculate the instantaneous tooth meshing stiffness. In the approach, the worm gear drive was modelled as a series of spur gear slices, and each slice was analyzed separately using the well-established formulae of spur gear loading and stresses. By combining the results obtained for all slices, the entire envolute worm gear set loading and stressing was obtained. The geometric modelling method presented allows tooth elastic deformation and tooth root stresses of worm gear drives under different load conditions to be investigated. Based on the slicing method introduced in this study, the instantaneous meshing stiffness and load share are obtained. In comparison with existing methods, this approach has both good analysis accuracy and less computing time.

Porous Carbon Nanoparticles Co-Doped with Nitrogen and Iron as an Efficient Catalyst for Oxygen Reduction Reaction

Oxygen Reduction Reaction (ORR) performance of iron and nitrogen co-doped porous carbon nanoparticles (Fe-NPC) with various physical and (electro) chemical properties have been investigated. Fe-NPC nanoparticles are synthesized via a facile soft-templating procedure by using Iron (III) chloride hexa-hydrate as iron precursor and aminophenol-formaldehyde resin as both carbon and nitrogen precursor. Fe-NPC nanoparticles shows high surface area (443.83 m2g-1), high pore volume (0.52 m3g-1), narrow mesopore size distribution (ca. 3.8 nm), high conductivity (IG/ID=1.04), high kinetic limiting current (11.71 mAcm-2) and more positive onset potential (-0.106 V) compared to metal-free NPC nanoparticles (-0.295V) which make it high efficient ORR metal-free catalysts in alkaline solution. This study may pave the way of feasibly designing iron and nitrogen containing carbon materials (Fe-N-C) for highly efficient oxygen reduction electro-catalysis.

Effect of Impact Angle on Erosive Abrasive Wear of Ductile and Brittle Materials

Erosion and abrasion are wear mechanisms reducing the lifetime of machine elements like valves, pump and pipe systems. Both wear mechanisms are acting at the same time, causing a “Synergy” effect, which leads to a rapid damage of the surface. Different parameters are effective on erosive abrasive wear rate. In this study effect of particle impact angle on wear rate and wear mechanism of ductile and brittle materials was investigated. A new slurry pot was designed for experimental investigation. As abrasive particle, silica sand was used. Particle size was ranking between 200- 500 μm. All tests were carried out in a sand-water mixture of 20% concentration for four hours. Impact velocities of the particles were 4.76 m/s. As ductile material steel St 37 with Vickers Hardness Number (VHN) of 245 and quenched St 37 with 510 VHN was used as brittle material. After wear tests, morphology of the eroded surfaces were investigated for better understanding of the wear mechanisms acting at different impact angles by using Scanning Electron Microscope. The results indicated that wear rate of ductile material was higher than brittle material. Maximum wear rate was observed by ductile material at a particle impact angle of 300 and decreased further by an increase in attack angle. Maximum wear rate by brittle materials was by impact angle of 450 and decreased further up to 900. Ploughing was the dominant wear mechanism by ductile material. Microcracks on the surface were detected by ductile materials, which are nucleation centers for crater formation. Number of craters decreased and depth of craters increased by ductile materials by attack angle higher than 300. Deformation wear mechanism was observed by brittle materials. Number and depth of pits decreased by brittle materials by impact angles higher than 450. At the end it is concluded that wear rate could not be directly related to impact angle of particles due to the different reaction of ductile and brittle materials.

Visualization of Flow Behaviour in Micro-Cavities during Micro Injection Moulding

Polymeric micro-cantilevers (Cs) are rapidly becoming popular for MEMS applications such as chemo- and biosensing as well as purely electromechanical applications such as microrelays. Polymer materials present suitable physical and chemical properties combined with low-cost mass production. Hence, micro-cantilevers made of polymers indicate much more biocompatibility and adaptability of rapid prototyping along with mechanical properties. This research studies the effects of three process and one size factors on the filling behaviour in micro cavity, and the role of each in the replication of micro parts using different polymer materials i.e. polypropylene (PP) SABIC 56M10 and acrylonitrile butadiene styrene (ABS) Magnum 8434 . In particular, the following factors are considered: barrel temperature, mould temperature, injection speed and the thickness of micro features. The study revealed that the barrel temperature and the injection speed are the key factors affecting the flow length of micro features replicated in PP and ABS. For both materials, an increase of feature sizes improves the melt flow. However, the melt fill of micro features does not increase linearly with the increase of their thickness.

Creating Entrepreneurial Universities: The Swedish Approach of Transformation

Sweden has succeeded to maintain a high level of growth and development and has managed to sustain highly ranked position among the world’s developed countries. In this regard, Swedish universities are playing a vital role in supporting innovation and entrepreneurship at all levels and developing Swedish knowledge economy. This paper is aiming to draw on the experiences of two leading Swedish universities, addressing their transformation approach to create entrepreneurial universities and fulfilling their objectives in the era of knowledge economy. The objectives of the paper include: 1) Introducing the Swedish higher education and its characteristics. 2) Examining the infrastructure elements for innovation and Entrepreneurship at two of the Swedish entrepreneurial universities. 3) Addressing the key aspects of support systems in the initiatives of both Chalmers and Gothenburg universities to support innovation and advance entrepreneurial practices. The paper will contribute to two discourses: 1) Examining the relationship between support systems for innovation and entrepreneurship and the Universities’ policies and practices. 2) Lessons for University leaders to assist the development and implementation of effective innovation and entrepreneurship policies and practices.

Low NOx Combustion of Pulverized Petroleum Cokes

This paper is aimed to study combustion characteristics of low NOx burner using petroleum cokes as fuel. The petroleum coke, which is produced through the oil refining process, is an attractive fuel in terms of its high heating value and low price. But petroleum coke is a challenging fuel because of its low volatile content, high sulfur and nitrogen content, which give rise to undesirable emission characteristics and low ignitability. Therefore, the research and development regarding the petroleum coke burner is needed for applying this industrial system. In this study, combustion and emission characteristics of petroleum cokes burner are experimentally investigated in an industrial steam boiler. The low NOx burner is designed to control fuel and air mixing to achieve staged combustion, which, in turn reduces both flame temperature and oxygen. Air distribution ratio of triple staged air is optimized experimentally. The result showed that NOx concentration is lowest when overfire air is used, and the burner function at a fuel rich condition. That is, the burner is operated at the equivalence ratio of 1.67 and overall equivalence ratio including overfire air is kept 0.87.

Rehabilitation Robot in Primary Walking Pattern Training for SCI Patient at Home

Recently attention has been focused on incomplete spinal cord injuries (SCI) to the central spine caused by pressure on parts of the white matter conduction pathway, such as the pyramidal tract. In this paper, we focus on a training robot designed to assist with primary walking-pattern training. The target patient for this training robot is relearning the basic functions of the usual walking pattern; it is meant especially for those with incomplete-type SCI to the central spine, who are capable of standing by themselves but not of performing walking motions. From the perspective of human engineering, we monitored the operator’s actions to the robot and investigated the movement of joints of the lower extremities, the circumference of the lower extremities, and exercise intensity with the machine. The concept of the device was to provide mild training without any sudden changes in heart rate or blood pressure, which will be particularly useful for the elderly and disabled. The mechanism of the robot is modified to be simple and lightweight with the expectation that it will be used at home.

Assessment of Groundwater Quality in Karakulam Grama Panchayath in Thiruvananthapuram, Kerala State, South India

Groundwater is vital to the livelihoods and health of the majority of the people, since it provides almost the entire water resource for domestic, agricultural and industrial uses. Groundwater quality comprises the physical, chemical and bacteriological qualities. The present investigation was carried out to determine the physicochemical and bacteriological quality of the ground water sources in the residential areas of Karakulam Grama Panchayath in Thiruvananthapuram district, Kerala state in India. Karakulam is located in the eastern suburbs of Thiruvananthapuram city. The major drinking water source of the residents in the study area is wells. The present study aims to assess the portability and irrigational suitability of groundwater in the study area. The water samples were collected from randomly selected dug wells and bore wells in the study area during post monsoon and pre monsoon seasons of the year 2014 after a preliminary field survey. The physical, chemical and bacteriological parameters of the water samples were analyzed following standard procedures. The concentration of heavy metals (Cd, Pb and Mn) in the acid digested water samples were determined by using an Atomic Absorption Spectrophotometer. The results showed that the pH of well water samples ranged from acidic to alkaline level. In majority of well water samples (>54 %) the iron and magnesium content were found high in both the seasons studied, and the values were above the permissible limits of WHO drinking water quality standards. Bacteriological analyses showed that 63% of the wells were contaminated with total coliforms in both the seasons studied. Irrigational suitability of groundwater was assessed by determining the chemical indices like Sodium Percentage (%Na), Sodium Adsorption Ratio (SAR), Residual Sodium Carbonate (RSC), Permeability Index (PI), and the results indicate that the well water in the study area are good for irrigation purposes. Therefore, the study reveals the degradation of drinking water quality groundwater sources in Karakulam Grama Panchayath in Thiruvananthapuram District, Keralain terms of its chemical and bacteriological characteristics, and is not potable without proper treatment. In the study, more than 1/3rdof the well water samples tested were positive for total coliforms, and the bacterial contamination may pose threat to public health. The study recommends the need for periodic well water quality monitoring in the study area and to conduct awareness programs among the residents.

Morphemic Analysis Awareness: A Boon or Bane on ESL Students’ Vocabulary Learning Strategy

This study investigated the impact of inflectional and derivational morphemic analysis awareness on ESL secondary school students’ vocabulary learning strategy. The quasi-experimental study was conducted with 106 low proficiency secondary school students in two experimental groups (inflectional and derivational) and one control group. The students’ vocabulary acquisition was assessed through two measures: Morphemic Analysis Test and Vocabulary- Morphemic Test in the pretest and posttest before and after an intervention programme. Results of ANCOVA revealed that both the experimental groups achieved a significant score in Morphemic Analysis Test and Vocabulary-Morphemic Test. However, the inflectional group obtained a fairly higher score than the derivational group. Thus, the results indicated that ESL low proficiency secondary school students performed better on inflectional morphemic awareness as compared to derivatives. The results also showed that the awareness of inflectional morphology contributed more on the vocabulary acquisition. Importantly, learning inflectional morphology can help ESL low proficiency secondary school students to develop both morphemic awareness and vocabulary gain. Theoretically, these findings show that not all morphemes are equally useful to students for their language development. Practically, these findings indicate that morphological instruction should at least be included in remediation and instructional efforts with struggling learners across all grade levels, allowing them to focus on meaning within the word before they attempt the text in large for better comprehension. Also, by methodologically, by conducting individualized intervention and assessment this study provided fresh empirical evidence to support the existing literature on morphemic analysis awareness and vocabulary learning strategy. Thus, a major pedagogical implication of the study is that morphemic analysis awareness strategy is a definite boon for ESL secondary school students in learning English vocabulary.

The Impact of Bank Consolidation on the Performance of SMES in Nigeria

This paper seeks to assess the implications of bank consolidation on the performance of small and medium scale enterprises in the Nigerian economy. Multiple linear regression technique and correlation matrix test were employed to measure the extent to which small and medium scale enterprises asset size, survival and access to credit were influenced. The result showed that bank deposit (BD) and bank credit (L or BC) impacted on asset size and survival of small and medium scale enterprises. None of the variables had significant impact on SMEs access to credit. There is a shift of focus by commercial banks away from small and medium scale enterprises (small customers), which is evidenced by the significant negative influence of bank credit to both the survival and asset size of small and medium enterprises. While micro finance banks work hard at providing funds to small and medium scale entrepreneurs, their capacity to meet the needs of these entrepreneurs is constrained. CBN should make policies that will boost micro finance bank’s capital and also monitor closely the management of the banks to ensure prudent financing of small and medium scale investments.