Ageing and Partial Discharge Patterns in Oil-Impregnated Paper and Pressboard Insulation at High Temperature

The power transformer is the most expensive, indispensable and arguably the most important equipment item in a power system Insulation failure in transformers can cause long term interruption to supply and loss of revenue and the condition assessment of the insulation is thus an important maintenance procedure. Oil-impregnated transformer insulation consists of mainly organic materials including mineral oil and cellulose-base paper and pressboard. The operating life of cellulose-based insulation, as with most organic insulation, depends heavily on its operating temperature rise above ambient. This paper reports results of a laboratory-based experimental investigation of partial discharge (PD) activity at high temperature in oil-impregnated insulation. The experiments reported here are part an on-going programme aimed at investigating the way in which insulation deterioration can be monitored and quantified by use of partial discharge diagnostics. Partial discharge patterns were recorded and analysed during increasing and decreasing phases of the temperature. The effect of ageing of the insulation on the PD patterns in oil and oil-impregnated insulation are also considered.

Closely Parametrical Model for an Electrical Arc Furnace

To maximise furnace production it-s necessary to optimise furnace control, with the objectives of achieving maximum power input into the melting process, minimum network distortion and power-off time, without compromise on quality and safety. This can be achieved with on the one hand by an appropriate electrode control and on the other hand by a minimum of AC transformer switching. Electrical arc is a stochastic process; witch is the principal cause of power quality problems, including voltages dips, harmonic distortion, unbalance loads and flicker. So it is difficult to make an appropriate model for an Electrical Arc Furnace (EAF). The factors that effect EAF operation are the melting or refining materials, melting stage, electrode position (arc length), electrode arm control and short circuit power of the feeder. So arc voltages, current and power are defined as a nonlinear function of the arc length. In this article we propose our own empirical function of the EAF and model, for the mean stages of the melting process, thanks to the measurements in the steel factory.

Computational Design of Inhibitory Agents of BMP-Noggin Interaction to Promote Osteogenesis

Bone growth factors, such as Bone Morphogenic Protein-2 (BMP-2) have been approved by the FDA to replace grafting for some surgical interventions, but the high dose requirement limits its use in patients. Noggin, an extracellular protein, blocks the effect of BMP-2 by binding to BMP. Preventing the BMP-2/noggin interaction will help increase the free concentration of BMP-2 and therefore should enhance its efficacy to induce bone formation. The work presented here involves computational design of novel small molecule inhibitory agents of BMP-2/noggin interaction, based on our current understanding of BMP-2, and its known putative ligands (receptors and antagonists). A successful acquisition of such an inhibitory agent of BMP-2/noggin interaction would allow clinicians to reduce the dose required of BMP-2 protein in clinical applications to promote osteogenesis. The available crystal structures of the BMPs, its receptors, and the binding partner noggin were analyzed to identify the critical residues involved in their interaction. In presenting this study, LUDI de novo design method was utilized to perform virtual screening of a large number of compounds from a commercially available library against the binding sites of noggin to identify the lead chemical compounds that could potentially block BMP-noggin interaction with a high specificity.

Combing LCIA and Fuzzy Risk Assessment for Environmental Impact Assessment

Environmental impact assessment (EIA) is a procedure tool of environmental management for identifying, predicting, evaluating and mitigating the adverse effects of development proposals. EIA reports usually analyze how the amounts or concentrations of pollutants obey the relevant standards. Actually, many analytical tools can deepen the analysis of environmental impacts in EIA reports, such as life cycle assessment (LCA) and environmental risk assessment (ERA). Life cycle impact assessment (LCIA) is one of steps in LCA to introduce the causal relationships among environmental hazards and damage. Incorporating the LCIA concept into ERA as an integrated tool for EIA can extend the focus of the regulatory compliance of environmental impacts to determine of the significance of environmental impacts. Sometimes, when using integrated tools, it is necessary to consider fuzzy situations due to insufficient information; therefore, ERA should be generalized to fuzzy risk assessment (FRA). Finally, the use of the proposed methodology is demonstrated through the study case of the expansion plan of the world-s largest plastics processing factory.

A Comparative Analysis of Modulation Control Strategies for Cascade H-Bridge 11-Level Inverter

The range of the output power is a very important and evident limitation of two-level inverters. In order to overcome this disadvantage, multilevel inverters are introduced. Recently, Cascade H-Bridge inverters have emerged as one of the popular converter topologies used in numerous industrial applications. The modulation switching strategies such as phase shifted carrier based Pulse Width Modulation (PWM) technique and Stair case modulation with Selective Harmonic Elimination (SHE) PWM technique are generally used. NR method is used to solve highly non linear transcendental equations which are formed by SHEPWM method. Generally NR method has a drawback of requiring good initial guess but in this paper a new approach is implemented for NR method with any random initial guess. A three phase CHB 11-level inverter is chosen for analysis. MATLAB/SIMULINK programming environment and harmonic profiles are compared. Finally this paper presents a method at fundamental switching frequency with least % THDV.

New EEM/BEM Hybrid Method for Electric Field Calculation in Cable Joints

A power cable is widely used for power supply in power distributing networks and power transmission lines. Due to limitations in the production, delivery and setting up power cables, they are produced and delivered in several separate lengths. Cable itself, consists of two cable terminations and arbitrary number of cable joints, depending on the cable route length. Electrical stress control is needed to prevent a dielectric breakdown at the end of the insulation shield in both the air and cable insulation. Reliability of cable joint depends on its materials, design, installation and operating environment. The paper describes design and performance results for new modeled cable joints. Design concepts, based on numerical calculations, must be correct. An Equivalent Electrodes Method/Boundary Elements Method-hybrid approach that allows electromagnetic field calculations in multilayer dielectric media, including inhomogeneous regions, is presented.

Formation of Civic Identity in the Process of Globalization: The Example of the U.S.A. and Kazakhstan

An attempt has been made several times to identify and discuss the U.S. experience on the formation of political nation in political science. The purpose of this research paper is to identify the main aspects of the formation of civic identity in the United States and Kazakhstan, through the identification of similarities and differences that can get practical application in making decisions of national policy issues in the context of globalization, as well as to answer the questions “What should unite the citizens of Kazakhstan to the nation?" and “What should be the dominant identity: civil or ethnic (national) one?" Can Kazakhstan being multiethnic country like America, adopt its experience in the formation of a civic nation? Since it is believed that the “multi-ethnic state of the population is a characteristic feature of most modern countries in the world," it states that “inter-ethnic integration is one of the most important aspects of the problem of forming a new social community (metaetnic - Kazakh people, Kazakh nation" [1].

Islam and Fertility Regulations

Islam has a general principle of increase in population. But the Muslims are equally obliged to take care of health, education and the provisions etc. for their offspring and wives in the best possible way. The Muslims would have to regulate and manage the number of children, if any situation affects their duties regarding their wives or children. Islam accomplishes permissibility of temporary blockade in human fertility if someone faces any problem regarding health of mother or children. During the life of the Holy Prophet (SAW), Azl (coitus interruptus) was the only way for temporary spacing between the children. In technologically developed environment, the same can be resort through some advanced methodology or instrument of temporary blockade. Solid grounds are available in Islam that the fertility rate should be managed if any of the aspect of human quality is being affected.

Evaluation of Internet Anxiety in SRBIAU Higher Education Students in Research Process

Increase in using internet makes some problems that one of them is "internet anxiety". Internet anxiety is a type of anxious that people may feel during surfing internet or using internet for their educational purpose, blogging or streaming to digital libraries. The goal of this study is evaluating of internet anxiety among the management students. In this research Ealy's internet anxiety questionnaire, consists of positive and negative items, is completed by 310 participants. According to the findings, about 64.7% of them were equal or below to mean anxiety score (50). The distribution of internet anxiety scores was normal and there was no meaningful difference between men-s and women's anxiety level in this sample. Results also showed that there is no meaningful difference of internet anxiety level between different fields of study in Management. This evaluation will help managers to perform gap analysis between the existent level and the desired one. Future work would be providing techniques for abating human anxiety while using internet via human computer interaction techniques.

Development of High Performance Clarification System for FBR Dissolver Liquor

A high performance clarification system has been discussed for advanced aqueous reprocessing of FBR spent fuel. Dissolver residue gives the cause of troubles on the plant operation of reprocessing. In this study, the new clarification system based on the hybrid of centrifuge and filtration was proposed to get the high separation ability of the component of whole insoluble sludge. The clarification tests of simulated solid species were carried out to evaluate the clarification performance using small-scale test apparatus of centrifuge and filter unit. The density effect of solid species on the collection efficiency was mainly evaluated in the centrifugal clarification test. In the filtration test using ceramic filter with pore size of 0.2μm, on the other hand, permeability and filtration rate were evaluated in addition to the filtration efficiency. As results, it was evaluated that the collection efficiency of solid species on the new clarification system was estimated as nearly 100%. In conclusion, the high clarification performance of dissolver liquor can be achieved by the hybrid of the centrifuge and filtration system.

The Autoregresive Analysis for Wind Turbine Signal Postprocessing

Today modern simulations solutions in the wind turbine industry have achieved a high degree of complexity and detail in result. Limitations exist when it is time to validate model results against measurements. Regarding Model validation it is of special interest to identify mode frequencies and to differentiate them from the different excitations. A wind turbine is a complex device and measurements regarding any part of the assembly show a lot of noise. Input excitations are difficult or even impossible to measure due to the stochastic nature of the environment. Traditional techniques for frequency analysis or features extraction are widely used to analyze wind turbine sensor signals, but have several limitations specially attending to non stationary signals (Events). A new technique based on autoregresive analysis techniques is introduced here for a specific application, a comparison and examples related to different events in the wind turbine operations are presented.

Zero Dimensional Simulation of Combustion Process of a DI Diesel Engine Fuelled With Biofuels

A zero dimensional model has been used to investigate the combustion performance of a single cylinder direct injection diesel engine fueled by biofuels with options like supercharging and exhaust gas recirculation. The numerical simulation was performed at constant speed. The indicated pressure, temperature diagrams are plotted and compared for different fuels. The emissions of soot and nitrous oxide are computed with phenomenological models. The experimental work was also carried out with biodiesel (palm stearin methyl ester) diesel blends, ethanol diesel blends to validate simulation results with experimental results, and observed that the present model is successful in predicting the engine performance with biofuels.

Experimental Investigation of Phase Distributions of Two-phase Air-silicone Oil Flow in a Vertical Pipe

This paper reports the results of an experimental study conducted to characterise the gas-liquid multiphase flows experienced within a vertical riser transporting a range of gas-liquid flow rates. The scale experiments were performed using an air/silicone oil mixture within a 6 m long riser. The superficial air velocities studied ranged from 0.047 to 2.836 m/ s, whilst maintaining a liquid superficial velocity at 0.047 m/ s. Measurements of the mean cross-sectional and time average radial void fraction were obtained using a wire mesh sensor (WMS). The data were recorded at an acquisition frequency of 1000 Hz over an interval of 60 seconds. For the range of flow conditions studied, the average void fraction was observed to vary between 0.1 and 0.9. An analysis of the data collected concluded that the observed void fraction was strongly affected by the superficial gas velocity, whereby the higher the superficial gas velocity, the higher was the observed average void fraction. The average void fraction distributions observed were in good agreement with the results obtained by other researchers. When the air-silicone oil flows were fully developed reasonably symmetric profiles were observed, with the shape of the symmetry profile being strongly dependent on the superficial gas velocity.

Evaluation of Wind Potential for the Lagoon of Venice (Italy) and Estimation of the Annual Energy Output for two Candidate Horizontal- Axis Low-Wind Turbines

This paper presents an evaluation of the wind potential in the area of the Lagoon of Venice (Italy). A full anemometric campaign of 2 year measurements, performed by the "Osservatorio Bioclimatologico dell'Ospedale al Mare di Venezia" has been analyzed to obtain the Weibull wind speed distribution and the main wind directions. The annual energy outputs of two candidate horizontal-axis wind turbines (“Aventa AV-7 LoWind" and “Gaia Wind 133-11kW") have been estimated on the basis of the computed Weibull wind distribution, registering a better performance of the former turbine, due to a higher ratio between rotor swept area and rated power of the electric generator, determining a lower cut-in wind speed.

Non-Polynomial Spline Solution of Fourth-Order Obstacle Boundary-Value Problems

In this paper we use quintic non-polynomial spline functions to develop numerical methods for approximation to the solution of a system of fourth-order boundaryvalue problems associated with obstacle, unilateral and contact problems. The convergence analysis of the methods has been discussed and shown that the given approximations are better than collocation and finite difference methods. Numerical examples are presented to illustrate the applications of these methods, and to compare the computed results with other known methods.

Efficient Lossless Compression of Weather Radar Data

Data compression is used operationally to reduce bandwidth and storage requirements. An efficient method for achieving lossless weather radar data compression is presented. The characteristics of the data are taken into account and the optical linear prediction is used for the PPI images in the weather radar data in the proposed method. The next PPI image is identical to the current one and a dramatic reduction in source entropy is achieved by using the prediction algorithm. Some lossless compression methods are used to compress the predicted data. Experimental results show that for the weather radar data, the method proposed in this paper outperforms the other methods.

Design of an Authentication Protocol for Secure Electronic Seals

Electronic seal is an electronic device to check the authenticity and integrity of freight containers at the point of arrival. While RFID-based eSeals are gaining more acceptances and there are also some standardization processes for these devices, a recent research revealed that the current RFID-based eSeals are vulnerable to various attacks. In this paper, we provide a feasible solution to enhance the security of active RFID-based eSeals. Our approach is to use an authentication and key agreement protocol between eSeal and reader device, enabling data encryption and integrity check. Our protocol is based on the use of block cipher AES, which is reasonable since a block cipher can also be used for many other security purposes including data encryption and pseudo-random number generation. Our protocol is very simple, and it is applicable to low-end active RFID eSeals.

Design of QFT-Based Self-Tuning Deadbeat Controller

This paper presents a design method of self-tuning Quantitative Feedback Theory (QFT) by using improved deadbeat control algorithm. QFT is a technique to achieve robust control with pre-defined specifications whereas deadbeat is an algorithm that could bring the output to steady state with minimum step size. Nevertheless, usually there are large peaks in the deadbeat response. By integrating QFT specifications into deadbeat algorithm, the large peaks could be tolerated. On the other hand, emerging QFT with adaptive element will produce a robust controller with wider coverage of uncertainty. By combining QFT-based deadbeat algorithm and adaptive element, superior controller that is called selftuning QFT-based deadbeat controller could be achieved. The output response that is fast, robust and adaptive is expected. Using a grain dryer plant model as a pilot case-study, the performance of the proposed method has been evaluated and analyzed. Grain drying process is very complex with highly nonlinear behaviour, long delay, affected by environmental changes and affected by disturbances. Performance comparisons have been performed between the proposed self-tuning QFT-based deadbeat, standard QFT and standard dead-beat controllers. The efficiency of the self-tuning QFTbased dead-beat controller has been proven from the tests results in terms of controller’s parameters are updated online, less percentage of overshoot and settling time especially when there are variations in the plant.

In Vitro Antibacterial and Antifungal Effects of a 30 kDa D-Galactoside-Specific Lectin from the Demosponge, Halichondria okadai

The present study has been taken to explore the screening of in vitro antimicrobial activities of D-galactose-binding sponge lectin (HOL-30). HOL-30 was purified from the marine demosponge Halichondria okadai by affinity chromatography. The molecular mass of the lectin was determined to be 30 kDa with a single polypeptide by SDS-PAGE under non-reducing and reducing conditions. HOL-30 agglutinated trypsinized and glutaraldehydefixed rabbit and human erythrocytes with preference for type O erythrocytes. The lectin was subjected to evaluation for inhibition of microbial growth by the disc diffusion method against eleven human pathogenic gram-positive and gram-negative bacteria. The lectin exhibited strong antibacterial activity against gram-positive bacteria, such as Bacillus megaterium and Bacillus subtilis. However, it did not affect against gram-negative bacteria such as Salmonella typhi and Escherichia coli. The largest zone of inhibition was recorded of Bacillus megaterium (12 in diameter) and Bacillus subtilis (10 mm in diameter) at a concentration of the lectin (250 μg/disc). On the other hand, the antifungal activity of the lectin was investigated against six phytopathogenic fungi based on food poisoning technique. The lectin has shown maximum inhibition (22.83%) of mycelial growth of Botrydiplodia theobromae at a concentration of 100 μg/mL media. These findings indicate that the lectin may be of importance to clinical microbiology and have therapeutic applications.

Effect of Using Stone Cutting Waste on the Compression Strength and Slump Characteristics of Concrete

The aim of this work is to study the possible use of stone cutting sludge waste in concrete production, which would reduce both the environmental impact and the production cost .Slurry sludge was used a source of water in concrete production, which was obtained from Samara factory/Jordan, The physico-chemical and mineralogical characterization of the sludge was carried out to identify the major components and to compare it with the typical sand used to produce concrete. Samples analysis showed that 96% of slurry sludge volume is water, so it should be considered as an important source of water. Results indicated that the use of slurry sludge as water source in concrete production has insignificant effect on compression strength, while it has a sharp effect on the slump values. Using slurry sludge with a percentage of 25% of the total water content obtained successful concrete samples regarding slump and compression tests. To clarify slurry sludge, settling process can be used to remove the suspended solid. A settling period of 30 min. obtained 99% removal efficiency. The clarified water is suitable for using in concrete mixes, which reduce water consumption, conserve water recourses, increase the profit, reduce operation cost and save the environment. Additionally, the dry sludge could be used in the mix design instead of the fine materials with sizes < 160 um. This application could conserve the natural materials and solve the environmental and economical problem caused by sludge accumulation.