Real Time Speed Estimation of Vehicles

this paper gives a novel approach towards real-time speed estimation of multiple traffic vehicles using fuzzy logic and image processing techniques with proper arrangement of camera parameters. The described algorithm consists of several important steps. First, the background is estimated by computing median over time window of specific frames. Second, the foreground is extracted using fuzzy similarity approach (FSA) between estimated background pixels and the current frame pixels containing foreground and background. Third, the traffic lanes are divided into two parts for both direction vehicles for parallel processing. Finally, the speeds of vehicles are estimated by Maximum a Posterior Probability (MAP) estimator. True ground speed is determined by utilizing infrared sensors for three different vehicles and the results are compared to the proposed algorithm with an accuracy of ± 0.74 kmph.

Impact of Shearing Date on Behaviors and Performances of Pregnant Rahmani Ewes

The effect of shearing date on behaviors and performances of 20 pregnant Rahmani ewes was evaluated in four groups (5each). Ewes were shorn at 70, 100 and 130 days of pregnancy in the first three groups respectively, while the fourth group was maintained unshorn as a control. Some behavioral and physiological data related to ewes in addition, blood cortisol level were recorded. Results revealed a significant increase in the frequencies of comfort and eating behaviors, respiratory rate, pulse rate, lamb birth weight and blood cortisol level in early and mid pregnancy shorn ewes. Also, a slight increase in pregnancy period was observed for those ewes. On the other hand, social behaviors, and core temperature were not affected by shearing. These results conclude that prenatal shearing (early and mid-pregnancy) of ewes increases the frequencies of comfort and eating behaviors, and improves the survival rates of lambs by increasing their birth weights.

Dimethyl Ether as an Ignition Improver for Hydrous Methanol Fuelled Homogeneous Charge Compression Ignition (HCCI) Engine

Homogeneous Charge Compression (HCCI) Ignition technology has been around for a long time, but has recently received renewed attention and enthusiasm. This paper deals with experimental investigations of HCCI engine using hydrous methanol as a primary fuel and Dimethyl Ether (DME) as an ignition improver. A regular diesel engine has been modified to work as HCCI engine for this investigation. The hydrous methanol is inducted and DME is injected into a single cylinder engine. Hence, hydrous methanol is used with 15% water content in HCCI engine and its performance and emission behavior is documented. The auto-ignition of Methanol is enabled by DME. The quantity of DME varies with respect to the load. In this study, the experiments are conducted independently and the effect of the hydrous methanol on the engine operating limit, heat release rate and exhaust emissions at different load conditions are investigated. The investigation also proves that the Hydrous Methanol with DME operation reduces the oxides of Nitrogen and smoke to an extreme low level which is not possible by the direct injection CI engine. Therefore, it is beneficial to use hydrous methanol-DME HCCI mode while using hydrous methanol in internal Combustion Engines.

Scheduling Maintenance Actions for Gas Turbines Aircraft Engines

This paper considers the problem of scheduling maintenance actions for identical aircraft gas turbine engines. Each one of the turbines consists of parts which frequently require replacement. A finite inventory of spare parts is available and all parts are ready for replacement at any time. The inventory consists of both new and refurbished parts. Hence, these parts have different field lives. The goal is to find a replacement part sequencing that maximizes the time that the aircraft will keep functioning before the inventory is replenished. The problem is formulated as an identical parallel machine scheduling problem where the minimum completion time has to be maximized. Two models have been developed. The first one is an optimization model which is based on a 0-1 linear programming formulation, while the second one is an approximate procedure which consists in decomposing the problem into several two-machine subproblems. Each subproblem is optimally solved using the first model. Both models have been implemented using Lingo and have been tested on two sets of randomly generated data with up to 150 parts and 10 turbines. Experimental results show that the optimization model is able to solve only instances with no more than 4 turbines, while the decomposition procedure often provides near-optimal solutions within a maximum CPU time of 3 seconds.

Changes of in vitro Cytokine Production induced by δ-Lactams

The aim of this work was to study the in vitro effects of δ-lactam 1 and its 4-chlorophenyl derivative 2, on the proliferative responses of human lymphocytes and Th1 and Th2 cytokine secretion. The possible protective role of vitamin E on intracellular stress oxidative induced by these compounds was also investigated. Peripheral blood lymphocytes were isolated using differential centrifugation on a density gradient of Histopaque. They were cultured with mitogen concanavalin A, vitamin E (10 μM) and with different concentrations of the compounds 1 and 2 (0.1 to 10 μM). Proliferation (MTT assay), IL-2, INFγ and IL-4 (Elisa kits), intracellular superoxide anion were determined. 1 and 2 were immunostimulant and increased cytokine secretion with a shift away from Th1 response to Th2. These properties were however accompanied by an increase in intracellular oxidative stress. The presence of vitamin E exhibited protective effects by reducing δ- lactam-induced superoxide anion generation in lymphocytes.

Reliability Analysis of Press Unit using Vague Set

In conventional reliability assessment, the reliability data of system components are treated as crisp values. The collected data have some uncertainties due to errors by human beings/machines or any other sources. These uncertainty factors will limit the understanding of system component failure due to the reason of incomplete data. In these situations, we need to generalize classical methods to fuzzy environment for studying and analyzing the systems of interest. Fuzzy set theory has been proposed to handle such vagueness by generalizing the notion of membership in a set. Essentially, in a Fuzzy Set (FS) each element is associated with a point-value selected from the unit interval [0, 1], which is termed as the grade of membership in the set. A Vague Set (VS), as well as an Intuitionistic Fuzzy Set (IFS), is a further generalization of an FS. Instead of using point-based membership as in FS, interval-based membership is used in VS. The interval-based membership in VS is more expressive in capturing vagueness of data. In the present paper, vague set theory coupled with conventional Lambda-Tau method is presented for reliability analysis of repairable systems. The methodology uses Petri nets (PN) to model the system instead of fault tree because it allows efficient simultaneous generation of minimal cuts and path sets. The presented method is illustrated with the press unit of the paper mill.

Near Perfect Reconstruction Quadrature Mirror Filter

In this paper, various algorithms for designing quadrature mirror filter are reviewed and a new algorithm is presented for the design of near perfect reconstruction quadrature mirror filter bank. In the proposed algorithm, objective function is formulated using the perfect reconstruction condition or magnitude response condition of prototype filter at frequency (ω = 0.5π) in ideal condition. The cutoff frequency is iteratively changed to adjust the filters coefficients using optimization algorithm. The performances of the proposed algorithm are evaluated in term of computation time, reconstruction error and number of iterations. The design examples illustrate that the proposed algorithm is superior in term of peak reconstruction error, computation time, and number of iterations. The proposed algorithm is simple, easy to implement, and linear in nature.

Performance of Compound Enhancement Algorithms on Dental Radiograph Images

The purpose of this research is to compare the original intra-oral digital dental radiograph images with images that are enhanced using a combination of image processing algorithms. Intraoral digital dental radiograph images are often noisy, blur edges and low in contrast. A combination of sharpening and enhancement method are used to overcome these problems. Three types of proposed compound algorithms used are Sharp Adaptive Histogram Equalization (SAHE), Sharp Median Adaptive Histogram Equalization (SMAHE) and Sharp Contrast adaptive histogram equalization (SCLAHE). This paper presents an initial study of the perception of six dentists on the details of abnormal pathologies and improvement of image quality in ten intra-oral radiographs. The research focus on the detection of only three types of pathology which is periapical radiolucency, widen periodontal ligament space and loss of lamina dura. The overall result shows that SCLAHE-s slightly improve the appearance of dental abnormalities- over the original image and also outperform the other two proposed compound algorithms.

Capture and Feedback in Flying Disc Throw with use of Kinect

This paper proposes a three-dimensional motion capture and feedback system of flying disc throwing action learners with use of Kinect device. Rather than conventional 3-D motion capture system, Kinect has advantages of cost merit, easy system development and operation. A novice learner of flying disc is trained to keep arm movement in steady height, to twist the waist, and to stretch the elbow according to the waist angle. The proposing system captures learners- body movement, checks their skeleton positions in pre-motion / motion / post-motion in several ways, and displays feedback messages to refine their actions.

A Persian OCR System using Morphological Operators

Optical Character Recognition (OCR) is a very old and of great interest in pattern recognition field. In this paper we introduce a very powerful approach to recognize Persian text. We have used morphological operators, especially Hit/Miss operator to descript each sub-word and by using a template matching approach we have tried to classify generated description. We used just one font in two different sizes to verify our approach. We achieved a very good rate, up to 99.9%.

Numerical Simulation of Inviscid Transient Flows in Shock Tube and its Validations

The aim of this paper is to develop a new two dimensional time accurate Euler solver for shock tube applications. The solver was developed to study the performance of a newly built short-duration hypersonic test facility at Universiti Tenaga Nasional “UNITEN" in Malaysia. The facility has been designed, built, and commissioned for different values of diaphragm pressure ratios in order to get wide range of Mach number. The developed solver uses second order accurate cell-vertex finite volume spatial discretization and forth order accurate Runge-Kutta temporal integration and it is designed to simulate the flow process for similar driver/driven gases (e.g. air-air as working fluids). The solver is validated against analytical solution and experimental measurements in the high speed flow test facility. Further investigations were made on the flow process inside the shock tube by using the solver. The shock wave motion, reflection and interaction were investigated and their influence on the performance of the shock tube was determined. The results provide very good estimates for both shock speed and shock pressure obtained after diaphragm rupture. Also detailed information on the gasdynamic processes over the full length of the facility is available. The agreements obtained have been reasonable.

Global Behavior in (Q-xy)2 Potential

The general global behavior of particle S a non-linear (Q - xy)2 potential cannot be revealed a Poincare surface of section method (PSS) because inost trajectories take practically infinitely long time to integrate numerically before they come back to the surface. In this study as an alternative to PSS, a multiple scale perturbation is applied to analyze global adiabatic, non-adiabatic and chaotic behavior of particles in this potential. It was found that the results can be summarized as a form of a Fermi-like map. Additionally, this method gives a variation of global stochasticity criteria with Q.

Effect of Applied Voltage Frequency on Electrical Treeing in 22 kV Cross-linked Polyethylene Insulated Cable

This paper presents the experimental results on effect of applied voltage stress frequency to the occurrence of electrical treeing in 22 kV cross linked polyethylene (XLPE) insulated cable.Hallow disk of XLPE insulating material with thickness 5 mm taken from unused high voltage cable was used as the specimen in this study. Stainless steel needle was inserted gradually into the specimen to give a tip to earth plane electrode separation of 2.50.2 mm at elevated temperature 105-110°C. The specimen was then annealed for 5 minute to minimize any mechanical stress build up around the needle-plane region before it was cooled down to room temperature. Each specimen were subjected to the same applied voltage stress level at 8 kV AC rms, with various frequency, 50, 100, 500, 1000 and 2000 Hz. Initiation time, propagation speed and pattern of electrical treeing were examined in order to study the effect of applied voltage stress frequency. By the experimental results, initial time of visible treeing decreases with increasing in applied voltage frequency. Also, obviously, propagation speed of electrical treeing increases with increasing in applied voltage frequency.Furthermore, two types of electrical treeing, bush-like and branch-like treeing were observed.The experimental results confirmed the effect of voltage stress frequency as well.

High Performance In0.42Ga0.58As/In0.26Ga0.74As Vertical Cavity Surface Emitting Quantum Well Laser on In0.31Ga0.69As Ternary Substrate

This paper reports on the theoretical performance analysis of the 1.3 μm In0.42Ga0.58As /In0.26Ga0.74As multiple quantum well (MQW) vertical cavity surface emitting laser (VCSEL) on the ternary In0.31Ga0.69As substrate. The output power of 2.2 mW has been obtained at room temperature for 7.5 mA injection current. The material gain has been estimated to be ~3156 cm-1 at room temperature with the injection carrier concentration of 2×1017 cm-3. The modulation bandwidth of this laser is measured to be 9.34 GHz at room temperature for the biasing current of 2 mA above the threshold value. The outcomes reveal that the proposed InGaAsbased MQW laser is the promising one for optical communication system.

A Novel Dual-Purpose Image Watermarking Technique

Image watermarking has proven to be quite an efficient tool for the purpose of copyright protection and authentication over the last few years. In this paper, a novel image watermarking technique in the wavelet domain is suggested and tested. To achieve more security and robustness, the proposed techniques relies on using two nested watermarks that are embedded into the image to be watermarked. A primary watermark in form of a PN sequence is first embedded into an image (the secondary watermark) before being embedded into the host image. The technique is implemented using Daubechies mother wavelets where an arbitrary embedding factor α is introduced to improve the invisibility and robustness. The proposed technique has been applied on several gray scale images where a PSNR of about 60 dB was achieved.

Ecosystems of Lake Sevan Basin-s Rivers in Armenia

Taking into account the importance of Lake Sevan and Lake Sevan basin-s rivers for Armenian economy, the main goals of our investigations were the documentation of water quality and the biodiversity of invertebrates developed in Lake Sevan basin-s rivers and selected tributaries. Moderately satisfied ecological condition for the biodiversity of Lake Sevan basin-s rivers has been established, and the changes in species- composition of zoobenthos in Lake Sevan were detected. A growing tendency of antibiotic resistance among E. coli isolates in water resources has been shown.

Study of Real Gas Behavior in a Single-Stage Gas Gun

In this paper, one-dimensional analysis of flow in a single-stage gas gun is conducted. The compressible inviscid flow equations are numerically solved by the second-order Roe TVD method, by using moving boundaries. For investigation of real gas effect the Noble-Able equation is applied. The numerical results are compared with the experimental data to validate the numerical scheme. The results show that with using the Noble-Able equation, the muzzle velocity decreases.

Non-reflection Boundary Conditions for Numerical Simulation of Supersonic Flow

This article presents the boundary conditions for the problem of turbulent supersonic gas flow in a plane channel with a perpendicular injection jets. The non-reflection boundary conditions for direct modeling of compressible viscous gases are studied. A formulation using the NSCBC (Navier- Stocks characteristic boundary conditions) through boundaries is derived for the subsonic inflow and subsonic non-reflection outflow situations. Verification of the constructed algorithm of boundary conditions is carried out by solving a test problem of perpendicular sound of jets injection into a supersonic gas flow in a plane channel.

Detection of Power Quality Disturbances using Wavelet Transform

This paper presents features that characterize power quality disturbances from recorded voltage waveforms using wavelet transform. The discrete wavelet transform has been used to detect and analyze power quality disturbances. The disturbances of interest include sag, swell, outage and transient. A power system network has been simulated by Electromagnetic Transients Program. Voltage waveforms at strategic points have been obtained for analysis, which includes different power quality disturbances. Then wavelet has been chosen to perform feature extraction. The outputs of the feature extraction are the wavelet coefficients representing the power quality disturbance signal. Wavelet coefficients at different levels reveal the time localizing information about the variation of the signal.

Power Minimization in Decode-and-XOR-Forward Two-Way Relay Networks

We consider a two-way relay network where two sources exchange information. A relay helps the two sources exchange information using the decode-and-XOR-forward protocol. We investigate the power minimization problem with minimum rate constraints. The system needs two time slots and in each time slot the required rate pair should be achievable. The power consumption is minimized in each time slot and we obtained the closed form solution. The simulation results confirm that the proposed power allocation scheme consumes lower total power than the conventional schemes.