Identification of Nonlinear Predictor and Simulator Models of a Cement Rotary Kiln by Locally Linear Neuro-Fuzzy Technique

One of the most important parts of a cement factory is the cement rotary kiln which plays a key role in quality and quantity of produced cement. In this part, the physical exertion and bilateral movement of air and materials, together with chemical reactions take place. Thus, this system has immensely complex and nonlinear dynamic equations. These equations have not worked out yet. Only in exceptional case; however, a large number of the involved parameter were crossed out and an approximation model was presented instead. This issue caused many problems for designing a cement rotary kiln controller. In this paper, we presented nonlinear predictor and simulator models for a real cement rotary kiln by using nonlinear identification technique on the Locally Linear Neuro- Fuzzy (LLNF) model. For the first time, a simulator model as well as a predictor one with a precise fifteen minute prediction horizon for a cement rotary kiln is presented. These models are trained by LOLIMOT algorithm which is an incremental tree-structure algorithm. At the end, the characteristics of these models are expressed. Furthermore, we presented the pros and cons of these models. The data collected from White Saveh Cement Company is used for modeling.

Analytical solution of Gas Flow Through a Micro-Nano Porous Media by Homotopy Perturbation method

In this paper, we have applied the homotopy perturbation method (HPM) for obtaining the analytical solution of unsteady flow of gas through a porous medium and we have also compared the findings of this research with some other analytical results. Results showed a very good agreement between results of HPM and the numerical solutions of the problem rather than other analytical solutions which have previously been applied. The results of homotopy perturbation method are of high accuracy and the method is very effective and succinct.

Physiological and Pathology Demographics of Veteran Rugby Athletes: Golden Oldies Rugby Festival

Recently, the health of retired National Football League players, particularly lineman has been investigated. A number of studies have reported increased cardiometabolic risk, premature ardiovascular disease and incidence of type 2 diabetes. Rugby union players have somatotypes very similar to National Football league players which suggest that rugby players may have similar health risks. The International Golden Oldies World Rugby Festival (GORF) provided a unique opportunity to investigate the demographics of veteran rugby players. METHODOLOGIES: A cross-sectional, observational study was completed using an online web-based questionnaire that consisted of medical history and physiological measures. Data analysis was completed using a one sample t-test (50yrs) and Chi-square test. RESULTS: A total of 216 veteran rugby competitors (response rate = 6.8%) representing 10 countries, aged 35-72 yrs (mean 51.2, S.D. ±8.0), participated in the online survey. As a group, the incidence of current smokers was low at 8.8% (avg 72.4 cigs/wk) whilst the percentage consuming alcohol was high (93.1% (avg 11.2 drinks/wk). Competitors reported the following top six chronic diseases/disorders; hypertension (18.6%), arthritis (OA/RA, 11.5%), asthma (9.3%), hyperlipidemia (8.2%), diabetes (all types, 7.5%) and gout (6%), there were significant differences between groups with regard to cancer (all types) and migraines. When compared to the Australian general population (Australian Bureau of Statistics data, n=18,000), GORF competitors had a Climstein Mike, Walsh Joe (corresponding author) and Burke Stephen School of Exercise Science, Australian Catholic University, 25A Barker Road, Strathfield, Sydney, NSW, 2016, Australia (e-mail: [email protected], [email protected], [email protected]). John Best is with Orthosports, 160 Belmore Rd., Randwick, Sydney,NSW 2031, Australia (e-mail: [email protected]). Heazlewood, Ian Timothy is with School of Environmental and Life Sciences, Faculty Education, Health and Science, Charles Darwin University, Precinct Yellow Building 2, Charles Darwin University, NT 0909, Australia (e-mail: [email protected]). Kettunen Jyrki Arcada University of Applied Sciences, Jan-Magnus Janssonin aukio 1, FI-00550, Helsinki, Finland (e-mail: [email protected]). Adams Kent is with California State University Monterey Bay, Kinesiology Department, 100 Campus Center, Seaside, CA., 93955, USA (email: [email protected]). DeBeliso Mark is with Department of Physical Education and Human Performance, Southern Utah University, 351 West University Blvd, Cedar City, Utah, USA (e-mail: [email protected]). significantly lower incidence of anxiety (p

Iterative Process to Improve Simple Adaptive Subdivision Surfaces Method with Butterfly Scheme

Subdivision surfaces were applied to the entire meshes in order to produce smooth surfaces refinement from coarse mesh. Several schemes had been introduced in this area to provide a set of rules to converge smooth surfaces. However, to compute and render all the vertices are really inconvenient in terms of memory consumption and runtime during the subdivision process. It will lead to a heavy computational load especially at a higher level of subdivision. Adaptive subdivision is a method that subdivides only at certain areas of the meshes while the rest were maintained less polygons. Although adaptive subdivision occurs at the selected areas, the quality of produced surfaces which is their smoothness can be preserved similar as well as regular subdivision. Nevertheless, adaptive subdivision process burdened from two causes; calculations need to be done to define areas that are required to be subdivided and to remove cracks created from the subdivision depth difference between the selected and unselected areas. Unfortunately, the result of adaptive subdivision when it reaches to the higher level of subdivision, it still brings the problem with memory consumption. This research brings to iterative process of adaptive subdivision to improve the previous adaptive method that will reduce memory consumption applied on triangular mesh. The result of this iterative process was acceptable better in memory and appearance in order to produce fewer polygons while it preserves smooth surfaces.

The use of a Bespoke Computer Game For Teaching Analogue Electronics

An implementation of a design for a game based virtual learning environment is described. The game is developed for a course in analogue electronics, and the topic is the design of a power supply. This task can be solved in a number of different ways, with certain constraints, giving the students a certain amount of freedom, although the game is designed not to facilitate trial-and error approach. The use of storytelling and a virtual gaming environment provides the student with the learning material in a MMORPG environment. The game is tested on a group of second year electrical engineering students with good results.

On Solving Single-Period Inventory Model under Hybrid Uncertainty

Inventory decisional environment of short life-cycle products is full of uncertainties arising from randomness and fuzziness of input parameters like customer demand requiring modeling under hybrid uncertainty. Prior inventory models incorporating fuzzy demand have unfortunately ignored stochastic variation of demand. This paper determines an unambiguous optimal order quantity from a set of n fuzzy observations in a newsvendor inventory setting in presence of fuzzy random variable demand capturing both fuzzy perception and randomness of customer demand. The stress of this paper is in providing solution procedure that attains optimality in two steps with demand information availability in linguistic phrases leading to fuzziness along with stochastic variation. The first step of solution procedure identifies and prefers one best fuzzy opinion out of all expert opinions and the second step determines optimal order quantity from the selected event that maximizes profit. The model and solution procedure is illustrated with a numerical example.

Design and Development of Pico-hydro Generation System for Energy Storage Using Consuming Water Distributed to Houses

This paper describes the design and development of pico-hydro generation system using consuming water distributed to houses. Water flow in the domestic pipes has kinetic energy that potential to generate electricity for energy storage purposes in addition to the routine activities such as laundry, cook and bathe. The inherent water pressure and flow inside the pipe from utility-s main tank that used for those usual activities is also used to rotate small scale hydro turbine to drive a generator for electrical power generation. Hence, this project is conducted to develop a small scale hydro generation system using consuming water distributed to houses as an alternative electrical energy source for residential use.

Numerical Simulation of Cavitation and Aeration in Discharge Gated Tunnel of a Dam Based on the VOF Method

Cavitation, usually known as a destructive phenomenon, involves turbulent unsteady two-phase flow. Having such features, cavitating flows have been turned to a challenging topic in numerical studies and many researches are being done for better understanding of bubbly flows and proposing solutions to reduce its consequent destructive effects. Aeration may be regarded as an effective protection against cavitation erosion in many hydraulic structures, like gated tunnels. The paper concerns numerical simulation of flow in discharge gated tunnel of a dam using ing RNG k -ε model coupled with the volume of fluid (VOF) method and the zone which is susceptible of cavitation inception in the tunnel is predicted. In the second step, a vent is considered in the mentioned zone for aeration and the numerical simulation is done again to study the effects of aeration. The results show that aeration is an impressively useful method to exclude cavitation in mentioned tunnels.

A Computational Comparison between Revetec Engine and Conventional Internal Combustion Engines on the Indicated Torque

This paper investigates the effect of replacing crankshaft with cam on the indicated torque during compression and power strokes in internal combustion engines. A Cycloidal cam profile was used in Revetec engine to calculate and compare the torque to a conventional engine, using a computational method. Firstly, the cylinder pressure was calculated using Ferguson equation, and then the torque calculated depending on cylinder pressure values in every crank angle. the results showed that by using Cycloidal cam profile in Revetec engine the torque can increased by 14% compared with conventional engines, which means an increase in engine efficiency.

Degree and the Effect of Order in the Family on Violence against Women (VAW)

The purpose of this study attempts to emphasize the factors relating to intra-family relationships (order point of view) on violence against the women, For this purpose a survey technique on the sample size amounted 100 women of married of city of Ilam in country of Iran were considered. For measurement of violence against the women , the CTS scaled has been used .violence against the women be measured in four dimension ( emotional violence, psycho violence, physical violence, neglect violence). highest violence was related to emotional violence and after are as follow respectively : physical violence and neglect violence. The results showed that women have experienced the violence more than once during the last year, degree of order in family is high. Explanation result indicated that the order variables in family including collective thinking, empathy and communal co-circumstance have significant effects on violence against the women. Via multiple regression analysis variables of empathy, religious tenet and education of husband had significant effect on violence against women. In other words relationships among family effect on violence in family.

Synchronization for Impulsive Fuzzy Cohen-Grossberg Neural Networks with Time Delays under Noise Perturbation

In this paper, we investigate a class of fuzzy Cohen- Grossberg neural networks with time delays and impulsive effects. By virtue of stochastic analysis, Halanay inequality for stochastic differential equations, we find sufficient conditions for the global exponential square-mean synchronization of the FCGNNs under noise perturbation. In particular, the traditional assumption on the differentiability of the time-varying delays is no longer needed. Finally, a numerical example is given to show the effectiveness of the results in this paper.

Antibacterial Capacity of Plumeria alba Petals

Antibacterial activity of Plumeria alba (Frangipani) petals methanolic extracts were evaluated against Escherichia coli, Proteus vulgaris,Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus saprophyticus, Enterococcus faecalis and Serratia marcescens by using disk diffusion method. Concentration extracts (80 %) showed the highest inhibition zone towards Escherichia coli (14.3 mm). Frangipani extract also showed high antibacterial activity against Staphylococcus saprophyticus, Proteus vulgaris and Serratia marcescens, but not more than the zones of the positive control used. Comparison between two broad specrum antibiotics to frangipani extracts showed that the 80 % concentration extracts produce the same zone of inhibition as Streptomycin. Frangipani extracts showed no bacterial activity towards Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis. There are differences in the sensitivity of different bacteria to frangipani extracts, suggesting that frangipani-s potency varies between these bacteria. The present results indicate that frangipani showed significant antibacterial activity especially to Escherichia coli.

Rotor Flow Analysis using Animplicit Harmonic Balance Method

This paper is an extension of a previous work where a diagonally implicit harmonic balance method was developed and applied to simulate oscillatory motions of pitching airfoil and wing. A more detailed study on the accuracy, convergence, and the efficiency of the method is carried out in the current paperby varying the number of harmonics in the solution approximation. As the main advantage of the method is itsusage for the design optimization of the unsteady problems, its application to more practical case of rotor flow analysis during forward flight is carried out and compared with flight test data and time-accurate computation results.

Investigation into Heterotrophic Activities and Algal Biomass in Surface Flow Stormwater Wetlands

Stormwater wetlands have been mainly designed in an empirical approach for water quality improvement, with little quantitative understanding of the internal microbial processes. This study investigated into heterotrophic bacterial production rate, heterotrophic bacterial mineralization percentage, and algal biomass in hypertrophic and eutrophic surface flow stormwater wetlands. Compared to a nearby wood leachate treatment wetland, the stormwater wetlands had much higher chlorophyll-a concentrations. The eutrophic stormwater wetland had improved water quality, whereas the hypertrophic stormwater wetland had degraded water quality. Heterotrophic bacterial activities in water were limited in the stormwater wetlands due to competition of algal growth for nutrients. The relative contribution of biofilms to the overall heterotrophic activities was higher in the stormwater wetlands than that in the wood leachate treatment wetland.

Surface Topography Assessment Techniques based on an In-process Monitoring Approach of Tool Wear and Cutting Force Signature

The quality of a machined surface is becoming more and more important to justify the increasing demands of sophisticated component performance, longevity, and reliability. Usually, any machining operation leaves its own characteristic evidence on the machined surface in the form of finely spaced micro irregularities (surface roughness) left by the associated indeterministic characteristics of the different elements of the system: tool-machineworkpart- cutting parameters. However, one of the most influential sources in machining affecting surface roughness is the instantaneous state of tool edge. The main objective of the current work is to relate the in-process immeasurable cutting edge deformation and surface roughness to a more reliable easy-to-measure force signals using a robust non-linear time-dependent modeling regression techniques. Time-dependent modeling is beneficial when modern machining systems, such as adaptive control techniques are considered, where the state of the machined surface and the health of the cutting edge are monitored, assessed and controlled online using realtime information provided by the variability encountered in the measured force signals. Correlation between wear propagation and roughness variation is developed throughout the different edge lifetimes. The surface roughness is further evaluated in the light of the variation in both the static and the dynamic force signals. Consistent correlation is found between surface roughness variation and tool wear progress within its initial and constant regions. At the first few seconds of cutting, expected and well known trend of the effect of the cutting parameters is observed. Surface roughness is positively influenced by the level of the feed rate and negatively by the cutting speed. As cutting continues, roughness is affected, to different extents, by the rather localized wear modes either on the tool nose or on its flank areas. Moreover, it seems that roughness varies as wear attitude transfers from one mode to another and, in general, it is shown that it is improved as wear increases but with possible corresponding workpart dimensional inaccuracy. The dynamic force signals are found reasonably sensitive to simulate either the progressive or the random modes of tool edge deformation. While the frictional force components, feeding and radial, are found informative regarding progressive wear modes, the vertical (power) components is found more representative carrier to system instability resulting from the edge-s random deformation.

Transient Heat Transfer Model for Car Body Primer Curing

A transient heat transfer mathematical model for the prediction of temperature distribution in the car body during primer baking has been developed by considering the thermal radiation and convection in the furnace chamber and transient heat conduction governing equations in the car framework. The car cockpit is considered like a structure with six flat plates, four vertical plates representing the car doors and the rear and front panels. The other two flat plates are the car roof and floor. The transient heat conduction in each flat plate is modeled by the lumped capacitance method. Comparison with the experimental data shows that the heat transfer model works well for the prediction of thermal behavior of the car body in the curing furnace, with deviations below 5%.

Data Mining Using Learning Automata

In this paper a data miner based on the learning automata is proposed and is called LA-miner. The LA-miner extracts classification rules from data sets automatically. The proposed algorithm is established based on the function optimization using learning automata. The experimental results on three benchmarks indicate that the performance of the proposed LA-miner is comparable with (sometimes better than) the Ant-miner (a data miner algorithm based on the Ant Colony optimization algorithm) and CNZ (a well-known data mining algorithm for classification).

The Effect of Increment in Simulation Samples on a Combined Selection Procedure

Statistical selection procedures are used to select the best simulated system from a finite set of alternatives. In this paper, we present a procedure that can be used to select the best system when the number of alternatives is large. The proposed procedure consists a combination between Ranking and Selection, and Ordinal Optimization procedures. In order to improve the performance of Ordinal Optimization, Optimal Computing Budget Allocation technique is used to determine the best simulation lengths for all simulation systems and to reduce the total computation time. We also argue the effect of increment in simulation samples for the combined procedure. The results of numerical illustration show clearly the effect of increment in simulation samples on the proposed combination of selection procedure.

Designing a Novel General Sorting Network Constructor Using Artificial Evolution

A method is presented for the construction of arbitrary even-input sorting networks exhibiting better properties than the networks created using a conventional technique of the same type. The method was discovered by means of a genetic algorithm combined with an application-specific development. Similarly to human inventions in the area of theoretical computer science, the evolved invention was analyzed: its generality was proven and area and time complexities were determined.

Proposing Enterprise Wide Information Systems Business Performance Model

Enterprise Wide Information Systems (EWIS) implementation involves the entire business and will require changes throughout the firm. Because of the scope, complexity and continuous nature of ERP, the project-based approach to managing the implementation process resulted in failure rates of between 60% and 80%. In recent years ERP systems have received much attention. The organizational relevance and risk of ERP projects make it important for organizations to focus on ways to make ERP implementation successful. Once these systems are in place, however, their performance depends on the identified macro variables viz. 'Business Process', 'Decision Making' and 'Individual / Group working'. The questionnaire was designed and administered. The responses from 92 organizations were compiled. The relationship of these variables with EWIS performance is analyzed using inferential statistical measurements. The study helps to understand the performance of model presented. The study suggested in keeping away from the calamities and thereby giving the necessary competitive edge. Whenever some discrepancy is identified during the process of performance appraisal care has to be taken to draft necessary preventive measures. If all these measures are taken care off then the EWIS performance will definitely deliver the results.