Accurate Calculation of Free Frequencies of Beams and Rectangular Plates

An accurate procedure to determine free vibrations of beams and plates is presented. The natural frequencies are exact solutions of governing vibration equations witch load to a nonlinear homogeny system. The bilinear and linear structures considered simulate a bridge. The dynamic behavior of this one is analyzed by using the theory of the orthotropic plate simply supported on two sides and free on the two others. The plate can be excited by a convoy of constant or harmonic loads. The determination of the dynamic response of the structures considered requires knowledge of the free frequencies and the shape modes of vibrations. Our work is in this context. Indeed, we are interested to develop a self-consistent calculation of the Eigen frequencies. The formulation is based on the determination of the solution of the differential equations of vibrations. The boundary conditions corresponding to the shape modes permit to lead to a homogeneous system. Determination of the noncommonplace solutions of this system led to a nonlinear problem in Eigen frequencies. We thus, develop a computer code for the determination of the eigenvalues. It is based on a method of bisection with interpolation whose precision reaches 10 -12. Moreover, to determine the corresponding modes, the calculation algorithm that we develop uses the method of Gauss with a partial optimization of the "pivots" combined with an inverse power procedure. The Eigen frequencies of a plate simply supported along two opposite sides while considering the two other free sides are thus analyzed. The results could be generalized with the case of a beam by regarding it as a plate with low width. We give, in this paper, some examples of treated cases. The comparison with results presented in the literature is completely satisfactory.

Enabling Integration across Heterogeneous Care Networks

The paper shows how the CASMAS modeling language, and its associated pervasive computing architecture, can be used to facilitate continuity of care by providing members of patientcentered communities of care with a support to cooperation and knowledge sharing through the usage of electronic documents and digital devices. We consider a scenario of clearly fragmented care to show how proper mechanisms can be defined to facilitate a better integration of practices and information across heterogeneous care networks. The scenario is declined in terms of architectural components and cooperation-oriented mechanisms that make the support reactive to the evolution of the context where these communities operate.

Model for Knowledge Representation using Sample Problems and Designing a Program for Automatically Solving Algebraic Problems

Nowadays there are many methods for representing knowledge such as semantic network, neural network, and conceptual graphs. Nonetheless, these methods are not sufficiently efficient when applied to perform and deduce on knowledge domains about supporting in general education such as algebra, analysis or plane geometry. This leads to the introduction of computational network which is a useful tool for representation knowledge base, especially for computational knowledge, especially knowledge domain about general education. However, when dealing with a practical problem, we often do not immediately find a new solution, but we search related problems which have been solved before and then proposing an appropriate solution for the problem. Besides that, when finding related problems, we have to determine whether the result of them can be used to solve the practical problem or not. In this paper, the extension model of computational network has been presented. In this model, Sample Problems, which are related problems, will be used like the experience of human about practical problem, simulate the way of human thinking, and give the good solution for the practical problem faster and more effectively. This extension model is applied to construct an automatic system for solving algebraic problems in middle school.

Fluorescent-Core Microcavities Based On Silicon Quantum Dots for Oil Sensing Applications

The compatibility of optical resonators with microfluidic systems may be relevant for chemical and biological applications. Here, a fluorescent-core microcavity (FCM) is investigated as a refractometric sensor for heavy oils. A high-index film of silicon quantum dots (QDs) was formed inside the capillary, supporting cylindrical fluorescence whispering gallery modes (WGMs). A set of standard refractive index oils was injected into a capillary, causing a shift of the WGM resonances toward longer wavelengths. A maximum sensitivity of 240 nm/RIU (refractive index unit) was found for a nominal oil index of 1.74. As well, a sensitivity of 22 nm/RIU was obtained for a lower index of 1.48, more typical of fuel hydrocarbons. Furthermore, the observed spectra and sensitivities were compared to theoretical predictions and reproduced via FDTD simulations, showing in general an excellent agreement. This work demonstrates the potential use of FCMs for oil sensing applications and the more generally for detecting liquid solutions with a high refractive index or high viscosity.

Transformer Top-Oil Temperature Modeling and Simulation

The winding hot-spot temperature is one of the most critical parameters that affect the useful life of the power transformers. The winding hot-spot temperature can be calculated as function of the top-oil temperature that can estimated by using the ambient temperature and transformer loading measured data. This paper proposes the estimation of the top-oil temperature by using a method based on Least Squares Support Vector Machines approach. The estimated top-oil temperature is compared with measured data of a power transformer in operation. The results are also compared with methods based on the IEEE Standard C57.91-1995/2000 and Artificial Neural Networks. It is shown that the Least Squares Support Vector Machines approach presents better performance than the methods based in the IEEE Standard C57.91-1995/2000 and artificial neural networks.

Learning Based On Computer Science Unplugged in Computer Science Education: Design, Development, and Assessment

Although, all high school students in Japan are required to learn informatics, many of them do not learn this topic sufficiently. In response to this situation, we propose a support package for high school informatics classes. To examine what students learned and if they sufficiently understood the context of the lessons, a questionnaire survey was distributed to 186 students. We analyzed the results of the questionnaire and determined the weakest units, which were “basic computer configuration” and “memory and secondary storage”. We then developed a package for teaching these units. We propose that our package be applied in high school classrooms.

Analysis and Categorization of e-Learning Activities Based On Meaningful Learning Characteristics

Learning is the acquisition of new mental schemata, knowledge, abilities and skills which can be used to solve problems potentially more successfully. The learning process is optimum when it is assisted and personalized. Learning is not a single activity, but should involve many possible activities to make learning become meaningful. Many e-learning applications provide facilities to support teaching and learning activities. One way to identify whether the e-learning system is being used by the learners is through the number of hits that can be obtained from the e-learning system's log data. However, we cannot rely solely to the number of hits in order to determine whether learning had occurred meaningfully. This is due to the fact that meaningful learning should engage five characteristics namely active, constructive, intentional, authentic and cooperative. This paper aims to analyze the e-learning activities that is meaningful to learning. By focusing on the meaningful learning characteristics, we match it to the corresponding Moodle e-learning activities. This analysis discovers the activities that have high impact to meaningful learning, as well as activities that are less meaningful. The high impact activities is given high weights since it become important to meaningful learning, while the low impact has less weight and said to be supportive e-learning activities. The result of this analysis helps us categorize which e-learning activities that are meaningful to learning and guide us to measure the effectiveness of e-learning usage.

A Study of the Effectiveness of the Routing Decision Support Algorithm

Multi criteria decision making (MCDM) methods like analytic hierarchy process, ELECTRE and multi-attribute utility theory are critically studied. They have irregularities in terms of the reliability of ranking of the best alternatives. The Routing Decision Support (RDS) algorithm is trying to improve some of their deficiencies. This paper gives a mathematical verification that the RDS algorithm conforms to the test criteria for an effective MCDM method when a linear preference function is considered.

Technological Deep Assessment of Automotive Parts Manufacturers Case of Iranian Manufacturers

In order to develop any strategy, it is essential to first identify opportunities, threats, weak and strong points. Assessment of technology level provides the possibility of concentrating on weak and strong points. The results of technology assessment have a direct effect on decision making process in the field of technology transfer or expansion of internal research capabilities so it has a critical role in technology management. This paper presents a conceptual model to analyze the technology capability of a company as a whole and in four main aspects of technology. This model was tested on 10 automotive parts manufacturers in IRAN. Using this model, capability level of manufacturers was investigated in four fields of managing aspects, hard aspects, human aspects, and information and knowledge aspects. Results show that these firms concentrate on hard aspect of technology while others aspects are poor and need to be supported more. So this industry should develop other aspects of technology as well as hard aspect to have effective and efficient use of its technology. These paper findings are useful for the technology planning and management in automotive part manufactures in IRAN and other Industries which are technology followers and transport their needed technologies.

WiPoD Wireless Positioning System based on 802.11 WLAN Infrastructure

This paper describes WiPoD (Wireless Position Detector) which is a pure software based location determination and tracking (positioning) system. It uses empirical signal strength measurements from different wireless access points for mobile user positioning. It is designed to determine the location of users having 802.11 enabled mobile devices in an 802.11 WLAN infrastructure and track them in real time. WiPoD is the first main module in our LBS (Location Based Services) framework. We tested K-Nearest Neighbor and Triangulation algorithms to estimate the position of a mobile user. We also give the analysis results of these algorithms for real time operations. In this paper, we propose a supportable, i.e. understandable, maintainable, scalable and portable wireless positioning system architecture for an LBS framework. The WiPoD software has a multithreaded structure and was designed and implemented with paying attention to supportability features and real-time constraints and using object oriented design principles. We also describe the real-time software design issues of a wireless positioning system which will be part of an LBS framework.

The Effect of Carboxymethyl Cellulose on the Stability of Emulsions Stabilized by Whey Proteins under Digestion in vitro and in vivo

In vitro gastro-duodenal digestion model was used to investigate the changes of emulsions under digestion conditions. Oil in water emulsions stabilized by whey proteins (2%) and stabilized by whey proteins (2%) with addition of carboxymethyl cellulose (0.75%) as gelling agent of continuous phase were prepared at pH7. Both emulsions were destabilized under gastric conditions; however the protective role of carboxymethyl cellulose was indicated by recording delay of fat digestibility of this emulsion. In the presence of carboxymethyl cellulose whey proteins on the interfacial surface of droplets were more resistant to gastric degradation causing limited hydrolysis of fat due to the poor acceptability of lipids for the enzymes. Studies of emulsions using in vivo model supported results from in vitro studies. Lower content of triglycerides in blood serum and higher amount of fecal fat of rats were determined when rats were fed by diet containing emulsion made with whey proteins and carboxymethyl cellulose. 

An Energy Integration Approach on UHDE Ammonia Process

In this paper, the energy performance of a selected UHDE Ammonia plant is optimized by conducting heat integration through waste heat recovery and the synthesis of a heat exchange network (HEN). Minimum hot and cold utility requirements were estimated through IChemE spreadsheet. Supporting simulation was carried out using HYSYS software. The results showed that there is no need for heating utility while the required cold utility was found to be around 268,714 kW. Hence a threshold pinch case was faced. Then, the hot and cold streams were matched appropriately. Also, waste heat recovered resulted with savings in HP and LP steams of approximately 51.0% and 99.6%, respectively. An economic analysis on proposed HEN showed very attractive overall payback period not exceeding 3 years. In general, a net saving approaching 35% was achieved in implementing heat optimization of current studied UHDE Ammonia process.

Investigation of Nickel as a Metal Substitute of Palladium Supported on HBeta Zeolite for Waste Tire Pyrolysis

Pyrolysis of waste tire is one of alternative technique to produce petrochemicals, such as light olefins, mixed C4, and monoaromatics. Noble metals supported on acid zeolite catalysts were reported as potential catalysts to produce the high valuable products from waste tire pyrolysis. Especially, Pd supported on HBeta gave a high yield of olefins, mixed C4, and mono-aromatics. Due to the high prices of noble metals, the objective of this work was to investigate whether or not a non-noble Ni metal can be used as a substitute of a noble metal, Pd, supported on HBeta as a catalyst for waste tire pyrolysis. Ni metal was selected in this work because Ni has high activity in cracking, isomerization, hydrogenation and the ring opening of hydrocarbons Moreover, Ni is an element in the same group as Pd noble metal, which is VIIIB group, aiming to produce high valuable products similarly obtained from Pd. The amount of Ni was varied as 5, 10, and 20% by weight, for comparison with a fixed 1 wt% Pd, using incipient wetness impregnation. The results showed that as a petrochemical-producing catalyst, 10%Ni/HBeta performed better than 1%Pd/HBeta because it did not only produce the highest yield of olefins and cooking gases, but the yields were also higher than 1%Pd/HBeta. 5%Ni/HBeta can be used as a substitute of 1%Pd/HBeta for similar crude production because its crude contains the similar amounts of naphtha and saturated HCs, although it gave no concentration of light mono-aromatics (C6-C11) in the oil. Additionally, 10%Ni/HBeta that gave high olefins and cooking gases was found to give a fairly high concentration of the light mono-aromatics in the oil.

Use of Semantic Networks as Learning Material and Evaluation of the Approach by Students

This article first summarizes reasons why current approaches supporting Open Learning and Distance Education need to be complemented by tools permitting lecturers, researchers and students to cooperatively organize the semantic content of Learning related materials (courses, discussions, etc.) into a fine-grained shared semantic network. This first part of the article also quickly describes the approach adopted to permit such a collaborative work. Then, examples of such semantic networks are presented. Finally, an evaluation of the approach by students is provided and analyzed.

Context for Simplicity: A Basis for Context-aware Systems Based on the 3GPP Generic User Profile

The paper focuses on the area of context modeling with respect to the specification of context-aware systems supporting ubiquitous applications. The proposed approach, followed within the SIMPLICITY IST project, uses a high-level system ontology to derive context models for system components which consequently are mapped to the system's physical entities. For the definition of user and device-related context models in particular, the paper suggests a standard-based process consisting of an analysis phase using the Common Information Model (CIM) methodology followed by an implementation phase that defines 3GPP based components. The benefits of this approach are further depicted by preliminary examples of XML grammars defining profiles and components, component instances, coupled with descriptions of respective ubiquitous applications.

Generating Qualitative Causal Graph using Modeling Constructs of Qualitative Process Theory for Explaining Organic Chemistry Reactions

This paper discusses the causal explanation capability of QRIOM, a tool aimed at supporting learning of organic chemistry reactions. The development of the tool is based on the hybrid use of Qualitative Reasoning (QR) technique and Qualitative Process Theory (QPT) ontology. Our simulation combines symbolic, qualitative description of relations with quantity analysis to generate causal graphs. The pedagogy embedded in the simulator is to both simulate and explain organic reactions. Qualitative reasoning through a causal chain will be presented to explain the overall changes made on the substrate; from initial substrate until the production of final outputs. Several uses of the QPT modeling constructs in supporting behavioral and causal explanation during run-time will also be demonstrated. Explaining organic reactions through causal graph trace can help improve the reasoning ability of learners in that their conceptual understanding of the subject is nurtured.

Power and Delay Optimized Graph Representation for Combinational Logic Circuits

Structural representation and technology mapping of a Boolean function is an important problem in the design of nonregenerative digital logic circuits (also called combinational logic circuits). Library aware function manipulation offers a solution to this problem. Compact multi-level representation of binary networks, based on simple circuit structures, such as AND-Inverter Graphs (AIG) [1] [5], NAND Graphs, OR-Inverter Graphs (OIG), AND-OR Graphs (AOG), AND-OR-Inverter Graphs (AOIG), AND-XORInverter Graphs, Reduced Boolean Circuits [8] does exist in literature. In this work, we discuss a novel and efficient graph realization for combinational logic circuits, represented using a NAND-NOR-Inverter Graph (NNIG), which is composed of only two-input NAND (NAND2), NOR (NOR2) and inverter (INV) cells. The networks are constructed on the basis of irredundant disjunctive and conjunctive normal forms, after factoring, comprising terms with minimum support. Construction of a NNIG for a non-regenerative function in normal form would be straightforward, whereas for the complementary phase, it would be developed by considering a virtual instance of the function. However, the choice of best NNIG for a given function would be based upon literal count, cell count and DAG node count of the implementation at the technology independent stage. In case of a tie, the final decision would be made after extracting the physical design parameters. We have considered AIG representation for reduced disjunctive normal form and the best of OIG/AOG/AOIG for the minimized conjunctive normal forms. This is necessitated due to the nature of certain functions, such as Achilles- heel functions. NNIGs are found to exhibit 3.97% lesser node count compared to AIGs and OIG/AOG/AOIGs; consume 23.74% and 10.79% lesser library cells than AIGs and OIG/AOG/AOIGs for the various samples considered. We compare the power efficiency and delay improvement achieved by optimal NNIGs over minimal AIGs and OIG/AOG/AOIGs for various case studies. In comparison with functionally equivalent, irredundant and compact AIGs, NNIGs report mean savings in power and delay of 43.71% and 25.85% respectively, after technology mapping with a 0.35 micron TSMC CMOS process. For a comparison with OIG/AOG/AOIGs, NNIGs demonstrate average savings in power and delay by 47.51% and 24.83%. With respect to device count needed for implementation with static CMOS logic style, NNIGs utilize 37.85% and 33.95% lesser transistors than their AIG and OIG/AOG/AOIG counterparts.

FRC – A New Sustainable Option for Construction to Mitigate Earthquakes

Ten simply supported grossly underreinforced tapered concrete beams of full size were tested upto complete collapse under flexural effect .Out of 10 beams, 5 beams were nonfibrous and the remaining beams contained fibres. The beams had a variation in the tapered angle as 2°, 4°, 6°, 8° and 10°. The concrete mix, conventional steel and the type of fibre used were held constant. Flat corrugated steel fibres were utilized as secondary reinforcement. The strength and stability parameters were measured. It is established that the fibrous tapered beams can be used economically in earthquake prone areas.

Effect of Calcination Temperature and MgO Crystallite Size on MgO/TiO2 Catalyst System for Soybean Transesterification

The effect of calcination temperature and MgO crystallite sizes on the structure and catalytic performance of TiO2 supported nano-MgO catalyst for the trans-esterification of soybean oil has been studied. The catalyst has been prepared by deposition precipitation method, characterised by XRD and FTIR and tested in an autoclave at 225oC. The soybean oil conversion after 15 minutes of the trans-esterification reaction increased when the calcination temperature was increased from 500 to 600oC and decreased with further increase in calcination temperature. Some glycerolysis activity was also detected on catalysts calcined at 600 and 700oC after 45 minutes of reaction. The trans-esterification reaction rate increased with the decrease in MgO crystallite size for the first 30 min.

A Web-Based System for Mapping Features into ISO 14649-Compliant Machining Workingsteps

The rapid development of manufacturing and information systems has caused significant changes in manufacturing environments in recent decades. Mass production has given way to flexible manufacturing systems, in which an important characteristic is customized or "on demand" production. In this scenario, the seamless and without gaps information flow becomes a key factor for success of enterprises. In this paper we present a framework to support the mapping of features into machining workingsteps compliant with the ISO 14649 standard (known as STEP-NC). The system determines how the features can be made with the available manufacturing resources. Examples of the mapping method are presented for features such as a pocket with a general surface.