Dengue Transmission Model between Infantand Pregnant Woman with Antibody

Dengue, a disease found in most tropical and subtropical areas of the world. It has become the most common arboviral disease of humans. This disease is caused by any of four serotypes of dengue virus (DEN1-DEN4). In many endemic countries, the average age of getting dengue infection is shifting upwards, dengue in pregnancy and infancy are likely to be encountered more frequently. The dynamics of the disease is studied by a compartmental model involving ordinary differential equations for the pregnant, infant human and the vector populations. The stability of each equilibrium point is given. The epidemic dynamic is discussed. Moreover, the numerical results are shown for difference values of dengue antibody.

A Model to Study the Effect of Na+ ions on Ca2+diffusion under Rapid Buffering Approximation

Calcium is very important for communication among the neurons. It is vital in a number of cell processes such as secretion, cell movement, cell differentiation. To reduce the system of reactiondiffusion equations of [Ca2+] into a single equation, two theories have been proposed one is excess buffer approximation (EBA) other is rapid buffer approximation (RBA). The RBA is more realistic than the EBA as it considers both the mobile and stationary endogenous buffers. It is valid near the mouth of the channel. In this work we have studied the effects of different types of buffers on calcium diffusion under RBA. The novel thing studied is the effect of sodium ions on calcium diffusion. The model has been made realistic by considering factors such as variable [Ca2+], [Na+] sources, sodium-calcium exchange protein(NCX), Sarcolemmal Calcium ATPase pump. The proposed mathematical leads to a system of partial differential equations which has been solved numerically to study the relationships between different parameters such as buffer concentration, buffer disassociation rate, calcium permeability. We have used Forward Time Centred Space (FTCS) approach to solve the system of partial differential equations.

A Software of Intrusion Detection Mechanism for Virtual Platforms

Security is an interesting and significance issue for popular virtual platforms, such as virtualization cluster and cloud platforms. Virtualization is the powerful technology for cloud computing services, there are a lot of benefits by using virtual machine tools which be called hypervisors, such as it can quickly deploy all kinds of virtual Operating Systems in single platform, able to control all virtual system resources effectively, cost down for system platform deployment, ability of customization, high elasticity and high reliability. However, some important security problems need to take care and resolved in virtual platforms that include terrible viruses, evil programs, illegal operations and intrusion behavior. In this paper, we present useful Intrusion Detection Mechanism (IDM) software that not only can auto to analyze all system-s operations with the accounting journal database, but also is able to monitor the system-s state for virtual platforms.

Role of Investment in the Course of Economic Growth in Pakistan

The present research was focused to investigate the role of investment in the course of economic growth with reference to Pakistan. The study analyzed the role of the public and private investment and impact of the political and macroeconomic uncertainty on economic growth of Pakistan by using the vector autoregressive approach (VAR). In long-run both public and private investment showed a positive impact on economic growth but the growth was largely driven by private investment as compared to public investment. Government consumption expenditure, economic uncertainty and political instability hampered the economic growth of Pakistan. In short-run the private investment positively influences the growth but there was negative and insignificant effect of the public investment and government consumption expenditure on the growth. There was a positive relationship found between economic uncertainty (proxy for inflation) and GDP in short run.

Effect of Periodically Use of Garlic (Allium sativum) Powder on Performance and Carcass Characteristics in Broiler Chickens

A feeding trial was conducted to investigate the effect of periodically use of garlic on performance and carcass characteristics in broiler chickens. 240 1-day-old Ross broiler chicks randomly allocated into the 10 dietary treatments (A, B, C, D, E, F, G, H, I and J) for 6 wk. Treatment A or control group, received basal diet (based on standards of Ross management guidelines) without supplementation of garlic powder while B, C and D dietary treatments were basal diet supplemented with 0.5, 1 and 3% garlic powder, respectively for the whole time of experiment (6 weeks). Birds in group E, F and G were fed control diet supplemented with 0.5, 1 and 3% garlic powder, respectively just in their starter diet (0- 21d). Birds in three other treatments (H, I and J) received control diet for the first 21 days and 0.5, 1 and 3% of garlic powder was added to their finisher diets, respectively. 1 and 3% supplemented groups in finisher period had better performance as compared with other groups. Since present study conducted in optimum and antiseptic conditions, it seems that better or more responses could be expected in performance if the raising conditions would not be healthy.

Geographic Profiling Based on Multi-point Centrography with K-means Clustering

Geographic Profiling has successfully assisted investigations for serial crimes. Considering the multi-cluster feature of serial criminal spots, we propose a Multi-point Centrography model as a natural extension of Single-point Centrography for geographic profiling. K-means clustering is first performed on the data samples and then Single-point Centrography is adopted to derive a probability distribution on each cluster. Finally, a weighted combinations of each distribution is formed to make next-crime spot prediction. Experimental study on real cases demonstrates the effectiveness of our proposed model.

Advanced Gronwall-Bellman-Type Integral Inequalities and Their Applications

In this paper, some new nonlinear generalized Gronwall-Bellman-Type integral inequalities with mixed time delays are established. These inequalities can be used as handy tools to research stability problems of delayed differential and integral dynamic systems. As applications, based on these new established inequalities, some p-stable results of a integro-differential equation are also given. Two numerical examples are presented to illustrate the validity of the main results.

Non Destructive Characterisation of Cement Mortar during Carbonation

The objective of this work was to examine the changes in non destructive properties caused by carbonation of CEM II mortar. Samples of CEM II mortar were prepared and subjected to accelerated carbonation at 20°C, 65% relative humidity and 20% CO2 concentration. We examined the evolutions of the gas permeability, the thermal conductivity, the thermal diffusivity, the volume of the solid phase by helium pycnometry, the longitudinal and transverse ultrasonic velocities. The principal contribution of this work is that, apart of the gas permeability, changes in other non destructive properties have never been studied during the carbonation of cement materials. These properties are important in predicting/measuring the durability of reinforced concrete in CO2 environment. The carbonation depth and the porosity accessible to water were also reported in order to explain comprehensively the changes in non destructive parameters.

The Application of Real Options to Capital Budgeting

Real options theory suggests that managerial flexibility embedded within irreversible investments can account for a significant value in project valuation. Although the argument has become the dominant focus of capital investment theory over decades, yet recent survey literature in capital budgeting indicates that corporate practitioners still do not explicitly apply real options in investment decisions. In this paper, we explore how real options decision criteria can be transformed into equivalent capital budgeting criteria under the consideration of uncertainty, assuming that underlying stochastic process follows a geometric Brownian motion (GBM), a mixed diffusion-jump (MX), or a mean-reverting process (MR). These equivalent valuation techniques can be readily decomposed into conventional investment rules and “option impacts", the latter of which describe the impacts on optimal investment rules with the option value considered. Based on numerical analysis and Monte Carlo simulation, three major findings are derived. First, it is shown that real options could be successfully integrated into the mindset of conventional capital budgeting. Second, the inclusion of option impacts tends to delay investment. It is indicated that the delay effect is the most significant under a GBM process and the least significant under a MR process. Third, it is optimal to adopt the new capital budgeting criteria in investment decision-making and adopting a suboptimal investment rule without considering real options could lead to a substantial loss in value.

Application of ESA in the CAVE Mode Authentication

This paper proposes the authentication method using ESA algorithm instead of using CAVE algorithm in the CDMA mobile communication systems including IS-95 and CDMA2000 1x. And, we analyze to apply ESA mechanism on behalf of CAVE mechanism without the change of message format and air interface in the existing CDMA systems. If ESA algorithm can be used as the substitution of CAVE algorithm, security strength of authentication algorithm is intensified without protocol change. An algorithm replacement proposed in this paper is not to change an authentication mechanism, but to configure input of ESA algorithm and to produce output. Therefore, our proposal can be the compatible to the existing systems.

The Impact of Knowledge Sharing on Innovation Capability in United Arab Emirates Organizations

The purpose of this study was to explore the relationship between knowledge sharing and innovation capability, by examining the influence of individual, organizational and technological factors on knowledge sharing. The research is based on a survey of 103 employees from different organizations in the United Arab Emirates. The study is based on a model and a questionnaire that was previously tested by Lin [1]. Thus, the study aims at examining the validity of that model in UAE context. The results of the research show varying degrees of correlation between the different variables, with ICT use having the strongest relationship with the innovation capabilities of organizations. The study also revealed little evidence of knowledge collecting and knowledge sharing among UAE employees.

Insights into Smoothies with High Levels of Fibre and Polyphenols: Factors Influencing Chemical, Rheological and Sensory Properties

Attempts to add fibre and polyphenols (PPs) into popular beverages present challenges related to the properties of finished products such as smoothies. Consumer acceptability, viscosity and phenolic composition of smoothies containing high levels of fruit fibre (2.5-7.5 g per 300 mL serve) and PPs (250-750 mg per 300 mL serve) were examined. The changes in total extractable PP, vitamin C content, and colour of selected smoothies over a storage stability trial (4°C, 14 days) were compared. A set of acidic aqueous model beverages were prepared to further examine the effect of two different heat treatments on the stability and extractability of PPs. Results show that overall consumer acceptability of high fibre and PP smoothies was low, with average hedonic scores ranging from 3.9 to 6.4 (on a 1-9 scale). Flavour, texture and overall acceptability decreased as fibre and polyphenol contents increased, with fibre content exerting a stronger effect. Higher fibre content resulted in greater viscosity, with an elevated PP content increasing viscosity only slightly. The presence of fibre also aided the stability and extractability of PPs after heating. A reduction of extractable PPs, vitamin C content and colour intensity of smoothies was observed after a 14-day storage period at 4°C. Two heat treatments (75°C for 45 min or 85°C for 1 min) that are normally used for beverage production, did not cause significant reduction of total extracted PPs. It is clear that high levels of added fibre and PPs greatly influence the consumer appeal of smoothies, suggesting the need to develop novel formulation and processing methods if a satisfactory functional beverage is to be developed incorporating these ingredients.

Carbon Accumulation in Winter Wheat under Different Growing Intensity and Climate Change

World population growth drives food demand, promotes intensification of agriculture, development of new production technologies and varieties more suitable for regional nature conditions. Climate change can affect the length of growing period, biomass and carbon accumulation in winter wheat. The increasing mean air temperature resulting from climate change can reduce the length of growth period of cereals, and without adequate adjustments in growing technologies or varieties, can reduce biomass and carbon accumulation. Deeper understanding and effective measures for monitoring and management of cereal growth process are needed for adaptation to changing climate and technological conditions.

A Security Model of Voice Eavesdropping Protection over Digital Networks

The purpose of this research is to develop a security model for voice eavesdropping protection over digital networks. The proposed model provides an encryption scheme and a personal secret key exchange between communicating parties, a so-called voice data transformation system, resulting in a real-privacy conversation. The operation of this system comprises two main steps as follows: The first one is the personal secret key exchange for using the keys in the data encryption process during conversation. The key owner could freely make his/her choice in key selection, so it is recommended that one should exchange a different key for a different conversational party, and record the key for each case into the memory provided in the client device. The next step is to set and record another personal option of encryption, either taking all frames or just partial frames, so-called the figure of 1:M. Using different personal secret keys and different sets of 1:M to different parties without the intervention of the service operator, would result in posing quite a big problem for any eavesdroppers who attempt to discover the key used during the conversation, especially in a short period of time. Thus, it is quite safe and effective to protect the case of voice eavesdropping. The results of the implementation indicate that the system can perform its function accurately as designed. In this regard, the proposed system is suitable for effective use in voice eavesdropping protection over digital networks, without any requirements to change presently existing network systems, mobile phone network and VoIP, for instance.

Crash Severity Modeling in Urban Highways Using Backward Regression Method

Identifying and classifying intersections according to severity is very important for implementation of safety related counter measures and effective models are needed to compare and assess the severity. Highway safety organizations have considered intersection safety among their priorities. In spite of significant advances in highways safety, the large numbers of crashes with high severities still occur in the highways. Investigation of influential factors on crashes enables engineers to carry out calculations in order to reduce crash severity. Previous studies lacked a model capable of simultaneous illustration of the influence of human factors, road, vehicle, weather conditions and traffic features including traffic volume and flow speed on the crash severity. Thus, this paper is aimed at developing the models to illustrate the simultaneous influence of these variables on the crash severity in urban highways. The models represented in this study have been developed using binary Logit Models. SPSS software has been used to calibrate the models. It must be mentioned that backward regression method in SPSS was used to identify the significant variables in the model. Consider to obtained results it can be concluded that the main factor in increasing of crash severity in urban highways are driver age, movement with reverse gear, technical defect of the vehicle, vehicle collision with motorcycle and bicycle, bridge, frontal impact collisions, frontal-lateral collisions and multi-vehicle crashes in urban highways which always increase the crash severity in urban highways.

Stable Robust Adaptive Controller and Observer Design for a Class of SISO Nonlinear Systems with Unknown Dead Zone

This paper presents a new stable robust adaptive controller and observer design for a class of nonlinear systems that contain i. Coupling of unmeasured states and unknown parameters ii. Unknown dead zone at the system actuator. The system is firstly cast into a modified form in which the observer and parameter estimation become feasible. Then a stable robust adaptive controller, state observer, parameter update laws are derived that would provide global adaptive system stability and desirable performance. To validate the approach, simulation was performed to a single-link mechanical system with a dynamic friction model and unknown dead zone exists at the system actuation. Then a comparison is presented with the results when there is no dead zone at the system actuation.

Modelling of Soil Erosion by Non Conventional Methods

Soil erosion is the most serious problem faced at global and local level. So planning of soil conservation measures has become prominent agenda in the view of water basin managers. To plan for the soil conservation measures, the information on soil erosion is essential. Universal Soil Loss Equation (USLE), Revised Universal Soil Loss Equation 1 (RUSLE1or RUSLE) and Modified Universal Soil Loss Equation (MUSLE), RUSLE 1.06, RUSLE1.06c, RUSLE2 are most widely used conventional erosion estimation methods. The essential drawbacks of USLE, RUSLE1 equations are that they are based on average annual values of its parameters and so their applicability to small temporal scale is questionable. Also these equations do not estimate runoff generated soil erosion. So applicability of these equations to estimate runoff generated soil erosion is questionable. Data used in formation of USLE, RUSLE1 equations was plot data so its applicability at greater spatial scale needs some scale correction factors to be induced. On the other hand MUSLE is unsuitable for predicting sediment yield of small and large events. Although the new revised forms of USLE like RUSLE 1.06, RUSLE1.06c and RUSLE2 were land use independent and they have almost cleared all the drawbacks in earlier versions like USLE and RUSLE1, they are based on the regional data of specific area and their applicability to other areas having different climate, soil, land use is questionable. These conventional equations are applicable for sheet and rill erosion and unable to predict gully erosion and spatial pattern of rills. So the research was focused on development of nonconventional (other than conventional) methods of soil erosion estimation. When these non-conventional methods are combined with GIS and RS, gives spatial distribution of soil erosion. In the present paper the review of literature on non- conventional methods of soil erosion estimation supported by GIS and RS is presented.

Control of Thermal Flow in Machine Tools Using Shape Memory Alloys

In this paper the authors propose and verify an approach to control heat flow in machine tool components. Thermal deformations are a main aspect that affects the accuracy of machining. Due to goals of energy efficiency, thermal basic loads should be reduced. This leads to inhomogeneous and time variant temperature profiles. To counteract these negative consequences, material with high melting enthalpy is used as a method for thermal stabilization. The increased thermal capacity slows down the transient thermal behavior. To account for the delayed thermal equilibrium, a control mechanism for thermal flow is introduced. By varying a gap in a heat flow path the thermal resistance of an assembly can be controlled. This mechanism is evaluated in two experimental setups. First to validate the ability to control the thermal resistance and second to prove the possibility of a self-sufficient option based on the selfsensing abilities of thermal shape memory alloys.

Direct and Indirect Somatic Embryogenesis from Petiole and Leaf Explants of Purple Fan Flower (Scaevola aemula R. Br. cv. 'Purple Fanfare')

Direct and indirect somatic embryogenesis (SE) from petiole and leaf explants of Scaevola aemula R. Br. cv. 'Purple Fanfare' was achieved. High frequency of somatic embryos was obtained directly from petiole and leaf explants using an inductive plant growth regulator signal thidiazuron (TDZ). Petiole explants were more responsive to SE than leaves. Plants derived from somatic embryos of petiole explants germinated more readily into plants. SE occurred more efficiently in half-strength Murashige and Skoog (MS) medium than in full-strength MS medium. Non-embryogenic callus induced by 2, 4-dichlorophenoxyacetic acid was used to investigate the feasibility of obtaining SE with TDZ as a secondary inductive plant growth regulator (PGR) signal. Non-embryogenic callus of S. aemula was able to convert into an “embryogenic competent mode" with PGR signal. Protocol developed for induction of direct and indirect somatic embryogenesis in S. aemula can improve the large scale propagation system of the plant in future.

A Hybrid Approach to Fault Detection and Diagnosis in a Diesel Fuel Hydrotreatment Process

It is estimated that the total cost of abnormal conditions to US process industries is around $20 billion dollars in annual losses. The hydrotreatment (HDT) of diesel fuel in petroleum refineries is a conversion process that leads to high profitable economical returns. However, this is a difficult process to control because it is operated continuously, with high hydrogen pressures and it is also subject to disturbances in feed properties and catalyst performance. So, the automatic detection of fault and diagnosis plays an important role in this context. In this work, a hybrid approach based on neural networks together with a pos-processing classification algorithm is used to detect faults in a simulated HDT unit. Nine classes (8 faults and the normal operation) were correctly classified using the proposed approach in a maximum time of 5 minutes, based on on-line data process measurements.