Urban Water Management at the Time of Natural Disaster

since in natural accidents, facilities that relate to this vita element are underground so, it is difficult to find quickly some right, exact and definite information about water utilities. There fore, this article has done operationally in Boukan city in Western Azarbaijan of Iran and it tries to represent operation and capabilities of Geographical Information system (GIS) in urban water management at the time of natural accidents. Structure of this article is that firstly it has established a comprehensive data base related to water utilities by collecting, entering, saving and data management, then by modeling water utilities we have practically considered its operational aspects related to water utility problems in urban regions.

An Interactive Web-based Simulation Tool for Surgical Thread

Interactive web-based computer simulations are needed by the medical community to replicate the experience of surgical procedures as closely and realistically as possible without the need to practice on corpses, animals and/or plastic models. In this paper, we offer a review on current state of the research on simulations of surgical threads, identify future needs and present our proposed plans to meet them. Our goal is to create a physics-based simulator, which will predict the behavior of surgical thread when subjected to conditions commonly encountered during surgery. To that end, we will i) develop three dimensional finite element models based on the Cosserat theory of elasticity ii) test and feedback results with the medical community and iii) develop a web-based user interface to run/command our simulator and visualize the results. The impacts of our research are that i) it will contribute to the development of a new generation of training for medical school students and ii) the simulator will be useful to expert surgeons in developing new, better and less risky procedures.

Visualizing Transit Through a Web Based Geographic Information System

Currently in many major cities, public transit schedules are disseminated through lists of routes, grids of stop times and static maps. This paper describes a web based geographic information system which disseminates the same schedule information through intuitive GIS techniques. Using data from Calgary, Canada, an map based interface has been created to allow users to see routes, stops and moving buses all at once. Zoom and pan controls as well as satellite imagery allows users to apply their personal knowledge about the local geography to achieve faster, and more pertinent transit results. Using asynchronous requests to web services, users are immersed in an application where buses and stops can be added and removed interactively, without the need to wait for responses to HTTP requests.

An EEG Case Study of Arithmetical Reasoning by Four Individuals Varying in Imagery and Mathematical Ability: Implications for Mathematics Education

The main issue of interest here is whether individuals who differ in arithmetical reasoning ability and levels of imagery ability display different brain activity during the conduct of mental arithmetical reasoning tasks. This was a case study of four participants who represented four extreme combinations of Maths –Imagery abilities: ie., low-low, high-high, high-low, low-high respectively. As the Ps performed a series of 60 arithmetical reasoning tasks, 128-channel EEG recordings were taken and the pre-response interval subsequently analysed using EGI GeosourceTM software. The P who was high in both imagery and maths ability showed peak activity prior to response in BA7 (superior parietal cortex) but other Ps did not show peak activity in this region. The results are considered in terms of the diverse routes that may be employed by individuals during the conduct of arithmetical reasoning tasks and the possible implications of this for mathematics education.

Sliding Mode Based Behavior Control

In this work, we suggested a new approach for the control of a mobile robot capable of being a building block of an intelligent agent. This approach includes obstacle avoidance and goal tracking implemented as two different sliding mode controllers. A geometry based behavior arbitration is proposed for fusing the two outputs. Proposed structure is tested on simulations and real robot. Results have confirmed the high performance of the method.

Process Optimization Regarding Geometrical Variation and Sensitivity Involving Dental Drill- and Implant-Guided Surgeries

Within dental-guided surgery, there has been a lack of analytical methods for optimizing the treatment of the rehabilitation concepts regarding geometrical variation. The purpose of this study is to find the source of the greatest geometrical variation contributor and sensitivity contributor with the help of virtual variation simulation of a dental drill- and implant-guided surgery process using a methodical approach. It is believed that lower geometrical variation will lead to better patient security and higher quality of dental drill- and implant-guided surgeries. It was found that the origin of the greatest contributor to the most variation, and hence where the foci should be set, in order to minimize geometrical variation was in the assembly category (surgery). This was also the category that was the most sensitive for geometrical variation.

Physio-mechanical Properties of Aluminium Metal Matrix Composites Reinforced with Al2O3 and SiC

Particulate reinforced metal matrix composites (MMCs) are potential materials for various applications due to their advantageous of physical and mechanical properties. This paper presents a study on the performance of stir cast Al2O3 SiC reinforced metal matrix composite materials. The results indicate that the composite materials exhibit improved physical and mechanical properties, such as, low coefficient of thermal expansion, high ultimate tensile strength, high impact strength, and hardness. It has been found that with the increase of weight percentage of reinforcement particles in the aluminium metal matrix, the new material exhibits lower wear rate against abrasive wearing. Being extremely lighter than the conventional gray cast iron material, the Al-Al2O3 and Al-SiC composites could be potential green materials for applications in the automobile industry, for instance, in making car disc brake rotors.

A Predictive Rehabilitation Software for Cerebral Palsy Patients

Young patients suffering from Cerebral Palsy are facing difficult choices concerning heavy surgeries. Diagnosis settled by surgeons can be complex and on the other hand decision for patient about getting or not such a surgery involves important reflection effort. Proposed software combining prediction for surgeries and post surgery kinematic values, and from 3D model representing the patient is an innovative tool helpful for both patients and medicine professionals. Beginning with analysis and classification of kinematics values from Data Base extracted from gait analysis in 3 separated clusters, it is possible to determine close similarity between patients. Prediction surgery best adapted to improve a patient gait is then determined by operating a suitable preconditioned neural network. Finally, patient 3D modeling based on kinematic values analysis, is animated thanks to post surgery kinematic vectors characterizing the closest patient selected from patients clustering.

Weak Measurement Theory for Discrete Scales

With the increasing spread of computers and the internet among culturally, linguistically and geographically diverse communities, issues of internationalization and localization and becoming increasingly important. For some of the issues such as different scales for length and temperature, there is a well-developed measurement theory. For others such as date formats no such theory will be possible. This paper fills a gap by developing a measurement theory for a class of scales previously overlooked, based on discrete and interval-valued scales such as spanner and shoe sizes. The paper gives a theoretical foundation for a class of data representation problems.

Geochemical Assessment of Heavy Metals Concentration in Surface Sediment of West Port, Malaysia

One year (November 2009-October 2010) sediment monitoring was used to evaluate pollution status, concentration and distribution of heavy metals (As, Cu, Cd, Cr, Hg, Ni, Pb and Zn) in West Port of Malaysia. Sediment sample were collected from nine stations every four months. Geo-accumulation factor and Pollution Load Index (PLI) were estimated to better understand the pollution level in study area. The heavy metal concentration (Mg/g dry weight) were ranged from 20.2 to 162 for As, 7.4 to 27.6 for Cu, 0.244 to 3.53 for Cd, 11.5 to 61.5 for Cr, 0.11 to 0.409 for Hg, 7.2 to 22.2 for Ni, 22.3 to 80 for Pb and 23 to 98.3 for Zn. In general, concentration some metals (As,Cd, Hg and Pb) was higher than background values that are considered as serious concern for aquatic life and the human health.

Adaptation of State/Transition-Based Methods for Embedded System Testing

In this paper test generation methods and appropriate fault models for testing and analysis of embedded systems described as (extended) finite state machines ((E)FSMs) are presented. Compared to simple FSMs, EFSMs specify not only the control flow but also the data flow. Thus, we define a two-level fault model to cover both aspects. The goal of this paper is to reuse well-known FSM-based test generation methods for automation of embedded system testing. These methods have been widely used in testing and validation of protocols and communicating systems. In particular, (E)FSMs-based specification and testing is more advantageous because (E)FSMs support the formal semantic of already standardised formal description techniques (FDTs) despite of their popularity in the design of hardware and software systems.

Engineered Cement Composite Materials Characterization for Tunneling Applications

Cements, which are intrinsically brittle materials, can exhibit a degree of pseudo-ductility when reinforced with a sufficient volume fraction of a fibrous phase. This class of materials, called Engineered Cement Composites (ECC) has the potential to be used in future tunneling applications where a level of pseudo-ductility is required to avoid brittle failures. However uncertainties remain regarding mechanical performance. Previous work has focused on comparatively thin specimens; however for future civil engineering applications, it is imperative that the behavior in tension of thicker specimens is understood. In the present work, specimens containing cement powder and admixtures have been manufactured following two different processes and tested in tension. Multiple matrix cracking has been observed during tensile testing, leading to a “strain-hardening" behavior, confirming the possible suitability of ECC material when used as thick sections (greater than 50mm) in tunneling applications.

Investigation and Calculation of Seismic Reliability of Structures

Recently, analysis and designing of the structures based on the Reliability theory have been the center of attention. Reason of this attention is the existence of the natural and random structural parameters such as the material specification, external loads, geometric dimensions etc. By means of the Reliability theory, uncertainties resulted from the statistical nature of the structural parameters can be changed into the mathematical equations and the safety and operational considerations can be considered in the designing process. According to this theory, it is possible to study the destruction probability of not only a specific element but also the entire system. Therefore, after being assured of safety of every element, their reciprocal effects on the safety of the entire system can be investigated.

Application of a Dual Satellite Geolocation System on Locating Sweeping Interference

This paper describes an application of a dual satellite geolocation (DSG) system on identifying and locating the unknown source of uplink sweeping interference. The geolocation system integrates the method of joint time difference of arrival (TDOA) and frequency difference of arrival (FDOA) with ephemeris correction technique which successfully demonstrated high accuracy in interference source location. The factors affecting the location error were also discussed.

Some Reflexions on the Selfunderstanding of the Kazakh People: A Way of Building Identity in the Modern World

This article explores the self-identity of the Kazakh people by way of identifying the roots of self-understanding in Kazakh culture. Unfortunately, Western methods of ethno psychology cannot fully capture what is unique about identity in Kazakh culture. Although Kazakhstan is the ninth largest country in terms of geographical space, Kazakh cultural identity is not wellknown in the West. In this article we offer an account of the national psychological features of the Kazakh people, in order to reveal the spiritual, mental, ethical dimensions of modern Kazakhs. These factors play a central role in the revival of forms of identity that are central to the Kazakh people.

Comparative Optical Analysis of Offset Reflector Antenna in GRASP

In this paper comparison of Reflector Antenna analyzing techniques based on wave and ray nature of optics is presented for an offset reflector antenna using GRASP (General Reflector antenna Analysis Software Package) software. The results obtained using PO (Physical Optics), PTD (Physical theory of Diffraction), and GTD (Geometrical Theory of Diffraction) are compared. The validity of PO and GTD techniques in regions around the antenna, caustic behavior of GTD in main beam, and deviation of GTD in case of near-in sidelobes of radiation pattern are discussed. The comparison for far-out sidelobes predicted by PO, PO + PTD and GTD is described. The effect of Direct Radiations from feed which results in feed selection for the system is addressed.

Sustainable Development in Iranian South Coastal and Islands Using Wind Energy

The development incompatible with environment cannot be sustainable. Using renewable energy sources such as solar energy, geothermal energy and wind energy can make sustainable development in a region. Iran has a lot of renewable and nonrenewable energy resources. Since Iran has a special geographic position, it has lot of solar and wind energy resources. Both solar and wind energy are free, renewable and adaptable with environment. The study of 10 year wind data in Iranian South coastal and Islands synoptic stations shows that the production of wind power electricity and water pumping is possible in this region. In this research, we studied the local and temporal distribution of wind using three – hour statistics of windspeed in Iranian South coastal and Islands synoptic stations. This research shows that the production of wind power electricity is possible in this region all the year.

The Leaves of a Tree

In this article, models based on quantitative analysis, physical geometry and regression analysis are established, by using analytic hierarchy process analysis, fuzzy cluster analysis, fuzzy photographic and data fitting. The reasons of various leaf shapes among different species and the differences between the leaf shapes on same tree have been solved by using software, such as Eviews, VB and Matlab. We also successfully estimate the leaf mass of a tree and the correlation with the tree profile.

Determination of Cu and Mo Potential Targets in the Khatunabad Based on Analytical Hierarchy Process, West of Mianeh, Iran

Khatunabad area is situated geologically in Urmieh- Dokhtar magmatic belt in NW of Iran. In this research, studied area has been investigated in order to recognize the potential copper and molybdenum-bearing target areas. The survey layers include the lithologic units, alteration, geochemical result, tectonics and copper and molybdenum occurrence. As an accurate decision can have a considerable effect on exploration plans, so in this efforts have been made to make use of new combination method. For this purpose, the analytical hierarchy process was used and revealed highly potential copper and molybdenum mineralization areas. Based on achieved results, geological perspective in north of studied area is appropriate for advance stage, especially for subsurface exploration in future.

Home Network-Specific RBAC Model

As various mobile sensing technologies, remote control and ubiquitous infrastructure are developing and expectations on quality of life are increasing, a lot of researches and developments on home network technologies and services are actively on going, Until now, we have focused on how to provide users with high-level home network services, while not many researches on home network security for guaranteeing safety are progressing. So, in this paper, we propose an access control model specific to home network that provides various kinds of users with home network services up one-s characteristics and features, and protects home network systems from illegal/unnecessary accesses or intrusions.