A Predictive Rehabilitation Software for Cerebral Palsy Patients

Young patients suffering from Cerebral Palsy are
facing difficult choices concerning heavy surgeries. Diagnosis settled
by surgeons can be complex and on the other hand decision for
patient about getting or not such a surgery involves important
reflection effort. Proposed software combining prediction for
surgeries and post surgery kinematic values, and from 3D model
representing the patient is an innovative tool helpful for both patients
and medicine professionals. Beginning with analysis and
classification of kinematics values from Data Base extracted from
gait analysis in 3 separated clusters, it is possible to determine close
similarity between patients. Prediction surgery best adapted to
improve a patient gait is then determined by operating a suitable
preconditioned neural network. Finally, patient 3D modeling based
on kinematic values analysis, is animated thanks to post surgery
kinematic vectors characterizing the closest patient selected from
patients clustering.





References:
<p>[1] V. Quentin: Cerebral Palsy, Saint-Maurice Hospital, 2012
[2] L. R. Smith, H. G. Chambers, S. Subramaniam, R. L. Lieber:
Transcriptional Abnormalities of Hamstring Muscle
Contractures in Children with Cerebral Palsy, PLoS One,Vol.7(8),
pp.e40686, 2012
[3] K. M. Steele, A. Seth, J. L. Hicks, M. S. Schwartz, S. L. Delp : Muscle
Contributions to Support and Progression During Single-limb Stance in
Crouch Gait, J. of Biomechanics, Vol.43, pp.2099&ndash;2105, 2010; H.
Sadeghi, P. Allard, M. Duhaime: Contributions of Lower-Limb Muscle
Power in Gait of People Without Impairments, Phys. Ther., Vol.80(12),
pp.1188&ndash;1196, 2000
[4] T. Rezgui: Musculoskeletal Modeling of Cerebral Palsy Children, Ph.D.
Thesis, UTC Compiegne, 2012; D.A. Winter : The Biomechanics and
Motor Control of Human Gait: Normal, Elderly and Pathological,
Univ. Waterloo Press, Ontario, Canada, 1991
[5] K. N. Kuo, D. W. Hang, P. A. Smith: External Rotation Osteotomy of
Femur in Patients with Spastic Cerebral Palsy, J. Muskoskeletal Res.,
Vol.2(1), pp.1, 1998
[6] A. M. K. Wong, Chia-Ling Chen, Wei-Hsien Hong, Wen-
KoChiou, Hsieh-Ching Chen, Fuk-Tan Tang: Gait Analysis through
Foot Pattern Recognition for Children with Cerebral Palsy, J.
Muskoskeletal Res., Vol.3(1), pp.71,1999; B. McWilliams, M. Cowley,
D. Nicholson: Foot Kinematics and Kinetics During Adolescent Gait,
Gait and Posture, Vol.17, pp.214224, 2003
[7] M. Van der Krogt, J. J. Bregman, M. Wisse, A. M. Doorenbosch, J.
Hatlaar, H. Collins: How Crouch Gait Can Dynamically Induce Stiff-
Knee Gait, Annals of Biomedical Engineering, Vol. 38(4), pp.1593&ndash;
1606, 2010
[8] A. Sebsadji: Evaluation of a Surgery Decision Maker Tool, Ph.D.
Thesis, Evry Val D&rsquo;Essonne University - UFR Science and Technology,
2011
[9] D. H. Sutherland: The Evolution of Clinical Gait Analysis, Part l:
Kinesiological EMG, Gait and Posture, Vol.14, pp.61&ndash;70, 2001; A.L.
Hof, H. Elzinga, W. Grimmius, J. P. K. Halbertsma : Speed
Dependence of Averaged EMG Profiles in Walking, Gait and Posture,
Vol.16, pp.78-86, 2002; M. Kadaba, H. Ramakrishnan, M. Wootten, J.
Gainey, G. Gorton, G, Cochran : Repeatability of Kinematic, Kinetic,
and Electromyographic Data in Normal Adult Gait, J. Orthop. Res.,
Vol.7(6), pp.849860, 1989; M. E. Wooton, M. P. Kadaba, G. V. B.
Cochran : Dynamic Electromyography, II. Normal Patterns during Gait,
J. Orthop. Res., Vol.8(2), pp.25965, 1990; A. L. Hof,, H. Elzinga, W.
Grimmius, J. P. K. Halbertsma : Speed Dependence of Averaged EMG
Profiles in Walking, Gait and Posture, Vol.16(1), pp.7886, 2002
[10] D. H. Sutherland: The Evolution of Clinical Gait Analysis, Part lI:
Kinematics, Gait and Posture, Vol.16, pp.159&ndash;179, 2002; M.L. Linden,
A. M. van der. Kerr, M. E. Hazlewood, S. J. Hillman, J. E. Robb :
Kinematic and Kinetic Gait Characteristics of Normal Children Walking
at a Range of Clinically Relevant Speeds, J. PediatrOrthop. Vol.22,
pp.800&ndash;806, 2002;
[11] D. H. Sutherland:The Evolution of Clinical Gait Analysis, Part III:
Kinetics and Energy Assessment, Gait and Posture, Vol.21, pp.447&ndash;
461, 2005
[12] A. Cornuejols, L. Miclet : Apprentissage Artificiel - Concepts et
Algorithmes, Ed. Algorithmes, Paris 2010
[13] B. W. Stansfield, M. E. Hazlewood, S. J. Hillman, A. M. Lawson, I. R.
Loudon, A. M. Mann : Sagittal Joint Angles, Moments and Powers are
Predominantly Characterized by Speed of Progression, not Age, in 7 to
12 Years Old Normal Children Walking at Self Selected Speeds, J.
Pediatr. Orthop., Vol.21, pp.403&ndash;11, 2001
[14] E. Growney, D. Meglan, M. Johnson, T. Cahalan, K. An : Repeated
Measures of Adult Normal Walking Using a Video Tracking System,
Gait and Posture, Vol.6(2), pp.147162, 1997
[15] B. W. Stansfield, M. E. Hazlewood, S. J. Hillman, A. M. Lawson, I. R.
Loudon, A. M. Mann : Normalization of Gait Data in Children, Gait
and Posture, Vol.17, pp.81&ndash;87, 2003
[16] P. N. Grimshaw, P. Marques-Bruna, A. Salo, N. Messenger : The 3-
dimensional Kinematics of the Walking Gait Cycle of Children Aged
between 10 and 24 Months: Cross Sectional and Repeated Measures,
Gait and Posture, Vol.7(1), pp.715, 1998
[17] B. W. Stansfield, S. J. Hillman, M. E. Hazlewood : Regression Analysis
of Gait Parameters with Speed in Normal Children Walking at Selfselected
Speeds, Gait and Posture, Vol.23(3), pp.28894, 2006
[18] D. W. Grieve, R. I. Gear : The Relationship between Length of Stride,
Step Frequency, Time of Swing and Speed of Walking for Children and
Adults, Ergonomics, Vol.5, pp.379&ndash;399, 1965</p>