Effect of Crystallographic Orientation on the Pitting Corrosion Resistance of Laser Surface Melted AISI 304L Austenitic Stainless Steel

The localized corrosion behavior of laser surface melted 304L austenitic stainless steel was studied by potentiodynamic polarization test. The extent of improvement in corrosion resistance was governed by the preferred orientation and the percentage of delta ferrite present on the surface of the laser melted sample. It was established by orientation imaging microscopy that the highest pitting potential value was obtained when grains were oriented in the most close- packed [101] direction compared to the random distribution of the base metal and other laser surface melted samples oriented in [001] direction. The sample with lower percentage of ferrite had good pitting resistance.

Convergence of a One-step Iteration Scheme for Quasi-asymptotically Nonexpansive Mappings

In this paper, we use a one-step iteration scheme to approximate common fixed points of two quasi-asymptotically nonexpansive mappings. We prove weak and strong convergence theorems in a uniformly convex Banach space. Our results generalize the corresponding results of Yao and Chen [15] to a wider class of mappings while extend those of Khan, Abbas and Khan [4] to an improved one-step iteration scheme without any condition and improve upon many others in the literature.

Efficient and Effective Gabor Feature Representation for Face Detection

We here propose improved version of elastic graph matching (EGM) as a face detector, called the multi-scale EGM (MS-EGM). In this improvement, Gabor wavelet-based pyramid reduces computational complexity for the feature representation often used in the conventional EGM, but preserving a critical amount of information about an image. The MS-EGM gives us higher detection performance than Viola-Jones object detection algorithm of the AdaBoost Haar-like feature cascade. We also show rapid detection speeds of the MS-EGM, comparable to the Viola-Jones method. We find fruitful benefits in the MS-EGM, in terms of topological feature representation for a face.

Sulphur-Mediated Precipitation of Pt/Fe/Co/CrIons in Liquid-Liquid and Gas-Liquid Chloride Systems

The proof of concept experiments were conducted to determine the feasibility of using small amounts of Dissolved Sulphur (DS) from the gaseous phase to precipitate platinum ions in chloride media. Two sets of precipitation experiments were performed in which the source of sulphur atoms was either a thiosulphate solution (Na2S2O3) or a sulphur dioxide gas (SO2). In liquid-liquid (L-L) system, complete precipitation of Pt was achieved at small dosages of Na2S2O3 (0.01 – 1.0 M) in a time interval of 3-5 minutes. On the basis of this result, gas absorption tests were carried out mainly to achieve sulphur solubility equivalent to 0.018 M. The idea that huge amounts of precious metals could be recovered selectively from their dilute solutions by utilizing the waste SO2 streams at low pressure seemed attractive from the economic and environmental point of views. Therefore, mass transfer characteristics of SO2 gas associated with reactive absorption across the gas-liquid (G-L) interface were evaluated under different conditions of pressure (0.5 – 2 bar), solution temperature ranges from 20 – 50 oC and acid strength (1 – 4 M, HCl). This paper concludes with information about selective precipitation of Pt in the presence of cations (Fe2+, Co2+, and Cr3+) in a CSTR and recommendation to scale up laboratory data to industrial pilot scale operations.

Application of GIS and Statistical Multivariate Techniques for Estimation of Soil Erosion and Sediment Yield

In recent years, most of the regions in the world are exposed to degradation and erosion caused by increasing population and over use of land resources. The understanding of the most important factors on soil erosion and sediment yield are the main keys for decision making and planning. In this study, the sediment yield and soil erosion were estimated and the priority of different soil erosion factors used in the MPSIAC method of soil erosion estimation is evaluated in AliAbad watershed in southwest of Isfahan Province, Iran. Different information layers of the parameters were created using a GIS technique. Then, a multivariate procedure was applied to estimate sediment yield and to find the most important factors of soil erosion in the model. The results showed that land use, geology, land and soil cover are the most important factors describing the soil erosion estimated by MPSIAC model.

Optimization of Lakes Aeration Process

The aeration process via injectors is used to combat the lack of oxygen in lakes due to eutrophication. A 3D numerical simulation of the resulting flow using a simplified model is presented. In order to generate the best dynamic in the fluid with respect to the aeration purpose, the optimization of the injectors location is considered. We propose to adapt to this problem the topological sensitivity analysis method which gives the variation of a criterion with respect to the creation of a small hole in the domain. The main idea is to derive the topological sensitivity analysis of the physical model with respect to the insertion of an injector in the fluid flow domain. We propose in this work a topological optimization algorithm based on the studied asymptotic expansion. Finally we present some numerical results, showing the efficiency of our approach

Chelate Enhanced Modified Fenton Treatment for Polycyclic Aromatic Hydrocarbons Contaminated Soils

This work focuses on the remediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soil via Fenton treatment coupled with novel chelating agent (CA). The feasibility of chelated modified Fenton (MF) treatment to promote PAH oxidation in artificially contaminated soils was investigated in laboratory scale batch experiments at natural pH. The effects of adding inorganic and organic CA are discussed. Experiments using different iron catalyst to CA ratios were conducted, resulting in hydrogen peroxide: soil: iron: CA weight ratios that varied from 0.049: 1: 0.072: 0.008 to 0.049: 1: 0.072: 0.067. The results revealed that (1) inorganic CA could provide much higher PAH removal efficiency and (2) most of the proposed CAs were more efficient than commonly utilised CAs even at mild ratio. This work highlights the potential of novel chelating agents in maintaining a suitable environment throughout the Fenton treatment, particularly in soils with high buffer capacity.

Environmental Assessment Methods in Abu Dhabi

Abu Dhabi is one of the fastest developed cities in the region. On top of all the current and future environmental challenges, Abu Dhabi aims to be among the top governments in the world in sustainable development. Abu Dhabi plans to create an attractive, livable and sustainable managed urban environment in which all necessary services and infrastructure are provided in a sustainable and timely manner. Abu Dhabi is engaged in a difficult challenge to develop credible environmental indicators that would assess the ambitious environmental targets. The aim of those indicators is to provide reliable guidance to decision makers and the public concerning key factors that determine the state of urban environment and identify major areas for policy intervention. In order to ensure sustainable development in UAE in general, and of Abu Dhabi City in particular, relevant and contextual environmental indicators need to be carefully considered. These indicators provide a gauge at a national government scale of how close countries are to establish environmental policy goals. The environment indicators assist city decision-making in such areas as identification of significant environmental aspects and observation of environmental performance trends. Those can help to find ways of reducing environmental pollution and in improving eco-efficiency. This paper outlines recent strategies implemented in Abu Dhabi that aims to improve the sustainable performance of the city-s built environment. The paper explores the variety of current and possible indicators at different levels and their roles in the development of the city.

Are Asia-Pacific Stock Markets Predictable? Evidence from Wavelet-based Fractional Integration Estimator

This paper examines predictability in stock return in developed and emergingmarkets by testing long memory in stock returns using wavelet approach. Wavelet-based maximum likelihood estimator of the fractional integration estimator is superior to the conventional Hurst exponent and Geweke and Porter-Hudak estimator in terms of asymptotic properties and mean squared error. We use 4-year moving windows to estimate the fractional integration parameter. Evidence suggests that stock return may not be predictable indeveloped countries of the Asia-Pacificregion. However, predictability of stock return insome developing countries in this region such as Indonesia, Malaysia and Philippines may not be ruled out. Stock return in the Thailand stock market appears to be not predictable after the political crisis in 2008.

Adomian Decomposition Method Associated with Boole-s Integration Rule for Goursat Problem

The Goursat partial differential equation arises in linear and non linear partial differential equations with mixed derivatives. This equation is a second order hyperbolic partial differential equation which occurs in various fields of study such as in engineering, physics, and applied mathematics. There are many approaches that have been suggested to approximate the solution of the Goursat partial differential equation. However, all of the suggested methods traditionally focused on numerical differentiation approaches including forward and central differences in deriving the scheme. An innovation has been done in deriving the Goursat partial differential equation scheme which involves numerical integration techniques. In this paper we have developed a new scheme to solve the Goursat partial differential equation based on the Adomian decomposition (ADM) and associated with Boole-s integration rule to approximate the integration terms. The new scheme can easily be applied to many linear and non linear Goursat partial differential equations and is capable to reduce the size of computational work. The accuracy of the results reveals the advantage of this new scheme over existing numerical method.

Robust Fractional-Order PI Controller with Ziegler-Nichols Rules

In process control applications, above 90% of the controllers are of PID type. This paper proposed a robust PI controller with fractional-order integrator. The PI parameters were obtained using classical Ziegler-Nichols rules but enhanced with the application of error filter cascaded to the fractional-order PI. The controller was applied on steam temperature process that was described by FOPDT transfer function. The process can be classified as lag dominating process with very small relative dead-time. The proposed control scheme was compared with other PI controller tuned using Ziegler-Nichols and AMIGO rules. Other PI controller with fractional-order integrator known as F-MIGO was also considered. All the controllers were subjected to set point change and load disturbance tests. The performance was measured using Integral of Squared Error (ISE) and Integral of Control Signal (ICO). The proposed controller produced best performance for all the tests with the least ISE index.

Generational PipeLined Genetic Algorithm (PLGA)using Stochastic Selection

In this paper, a pipelined version of genetic algorithm, called PLGA, and a corresponding hardware platform are described. The basic operations of conventional GA (CGA) are made pipelined using an appropriate selection scheme. The selection operator, used here, is stochastic in nature and is called SA-selection. This helps maintaining the basic generational nature of the proposed pipelined GA (PLGA). A number of benchmark problems are used to compare the performances of conventional roulette-wheel selection and the SA-selection. These include unimodal and multimodal functions with dimensionality varying from very small to very large. It is seen that the SA-selection scheme is giving comparable performances with respect to the classical roulette-wheel selection scheme, for all the instances, when quality of solutions and rate of convergence are considered. The speedups obtained by PLGA for different benchmarks are found to be significant. It is shown that a complete hardware pipeline can be developed using the proposed scheme, if parallel evaluation of the fitness expression is possible. In this connection a low-cost but very fast hardware evaluation unit is described. Results of simulation experiments show that in a pipelined hardware environment, PLGA will be much faster than CGA. In terms of efficiency, PLGA is found to outperform parallel GA (PGA) also.

Impact Assessment of Air Pollution Stress on Plant Species through Biochemical Estimations

The present study was conducted to investigate the response of plants exposed to lignite-based thermal power plant emission. For this purpose, five plant species were collected from 1.0 km distance (polluted site) and control plants were collected from 20.0 km distance (control site) to thermal power plant. The common tree species Cassia siamea Lamk., Polyalthia longifolia. Sonn, Acacia longifolia (Andrews) Wild., Azadirachta indica A.Juss, Ficus religiosa L. were selected as test plants. Photosynthetic pigments changes (chlorophyll a, chlorophyll b and carotenoids) and rubisco enzyme modifications were studied. Reduction was observed in the photosynthetic pigments of plants growing in polluted site and also large sub unit of the rubisco enzyme was degraded in Azadirachta indica A. Juss collected from polluted site.

Solar Photo-Fenton Induced Degradation of Combined Chlorpyrifos, Cypermethrin and Chlorothalonil Pesticides in Aqueous Solution

The feasibility of employing solar radiation for enhanced Fenton process in degradation of combined chlorpyrifos, cypermethrin and chlorothalonil pesticides was examined. The effect of various operating conditions of the process on biodegradability improvement and mineralization of the pesticides were also evaluated. The optimum operating conditions for treatment of aqueous solution containing 100, 50 and 250 mg L-1 chlorpyrifos cypermethrin and chlorothalonil, respectively were observed to be H2O2/COD molar ratio 2, H2O2/Fe2+ molar ratio 25 and pH 3. Under the optimum operating conditions, complete degradation of the pesticides occurred in 1 min. Biodegradability (BOD5/COD) increased from zero to 0.36 in 60 min, and COD and TOC removal were 74.19 and 58.32%, respectively in 60 min. Due to mineralization of organic carbon, decrease in ammonia-nitrogen from 22 to 4.3 mg L-1 and increase in nitrate from 0.7 to 18.1 mg L-1 in 60 min were recorded. The study indicated that solar photo-Fenton process can be used for pretreatment of chlorpyrifos, cypermethrin and chlorothalonil pesticides in aqueous solution for further biological treatment.

Calculation of the Ceramics Weibull Parameters

The paper deals with calculation of the parameters of ceramic material from a set of destruction tests of ceramic heads of total hip joint endoprosthesis. The standard way of calculation of the material parameters consists in carrying out a set of 3 or 4 point bending tests of specimens cut out from parts of the ceramic material to be analysed. In case of ceramic heads, it is not possible to cut out specimens of required dimensions because the heads are too small (if the cut out specimens were smaller than the normalised ones, the material parameters derived from them would exhibit higher strength values than those which the given ceramic material really has). On that score, a special testing jig was made, in which 40 heads were destructed. From the measured values of circumferential strains of the head-s external spherical surface under destruction, the state of stress in the head under destruction was established using the final elements method (FEM). From the values obtained, the sought for parameters of the ceramic material were calculated using Weibull-s weakest-link theory.

Effects of Irradiation to Morphological, Physicochemical and Biocompatibility Properties of Carrageenan

The characterization of κ-carrageenan could provide a better understanding of its functions in biological, medical and industrial applications. Chemical and physical analyses of carrageenan from seaweeds, Euchema cottonii L., were done to offer information on its properties and the effects of Co-60 γ-irradiation on its thermochemical characteristics. The structural and morphological characteristics of κ-carrageenan were determined using scanning electron microscopy (SEM) while the composition, molecular weight and thermal properties were determined using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), gel permeation chromatography (GPC), thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Further chemical analysis was done using hydrogen-1 nuclear magnetic resonance (1H NMR) and functional characteristics in terms of biocompatibility were evaluated using cytotoxicity test.

Research on the Methodologies of the Opportune Innovation - A Case Study of BYD

The main purpose of this paper is to research on the methodologies of BYD to implement the opportune innovation. BYD is a Chinese company which has the IT component manufacture, the rechargeable battery and the automobile businesses. The paper deals with the innovation methodology as the same as the IPR management BYD implements in order to obtain the rapid growth of technology development with the reasonable cost of money and time.

Decoy-pulse Protocol for Frequency-coded Quantum Key Distribution

We propose a decoy-pulse protocol for frequency-coded implementation of B92 quantum key distribution protocol. A direct extension of decoy-pulse method to frequency-coding scheme results in security loss as an eavesdropper can distinguish between signal and decoy pulses by measuring the carrier photon number without affecting other statistics. We overcome this problem by optimizing the ratio of carrier photon number of decoy-to-signal pulse to be as close to unity as possible. In our method the switching between signal and decoy pulses is achieved by changing the amplitude of RF signal as opposed to modulating the intensity of optical signal thus reducing system cost. We find an improvement by a factor of 100 approximately in the key generation rate using decoy-state protocol. We also study the effect of source fluctuation on key rate. Our simulation results show a key generation rate of 1.5×10-4/pulse for link lengths up to 70km. Finally, we discuss the optimum value of average photon number of signal pulse for a given key rate while also optimizing the carrier ratio.

A New Integer Programming Formulation for the Chinese Postman Problem with Time Dependent Travel Times

The Chinese Postman Problem (CPP) is one of the classical problems in graph theory and is applicable in a wide range of fields. With the rapid development of hybrid systems and model based testing, Chinese Postman Problem with Time Dependent Travel Times (CPPTDT) becomes more realistic than the classical problems. In the literature, we have proposed the first integer programming formulation for the CPPTDT problem, namely, circuit formulation, based on which some polyhedral results are investigated and a cutting plane algorithm is also designed. However, there exists a main drawback: the circuit formulation is only available for solving the special instances with all circuits passing through the origin. Therefore, this paper proposes a new integer programming formulation for solving all the general instances of CPPTDT. Moreover, the size of the circuit formulation is too large, which is reduced dramatically here. Thus, it is possible to design more efficient algorithm for solving the CPPTDT in the future research.

A Joint Routing-Scheduling Approach for Throughput Optimization in WMNs

Wireless Mesh Networking is a promising proposal for broadband data transmission in a large area with low cost and acceptable QoS. These features- trade offs in WMNs is a hot research field nowadays. In this paper a mathematical optimization framework has been developed to maximize throughput according to upper bound delay constraints. IEEE 802.11 based infrastructure backhauling mode of WMNs has been considered to formulate the MINLP optimization problem. Proposed method gives the full routing and scheduling procedure in WMN in order to obtain mentioned goals.