Optimization of Lakes Aeration Process

The aeration process via injectors is used to combat the lack of oxygen in lakes due to eutrophication. A 3D numerical simulation of the resulting flow using a simplified model is presented. In order to generate the best dynamic in the fluid with respect to the aeration purpose, the optimization of the injectors location is considered. We propose to adapt to this problem the topological sensitivity analysis method which gives the variation of a criterion with respect to the creation of a small hole in the domain. The main idea is to derive the topological sensitivity analysis of the physical model with respect to the insertion of an injector in the fluid flow domain. We propose in this work a topological optimization algorithm based on the studied asymptotic expansion. Finally we present some numerical results, showing the efficiency of our approach




References:
[1] M. Abdelwahed, M. Amara, F. Dabaghi, Numerical analysis of a two
phase flow, Journal of Computational Methods, 5(3), 2012.
[2] M. Abdelwahed, F. Dabaghi, D. Ouazar, A virtual numerical simulator for
aeration effects in lake eutrophication, Int. J. Comput. Fluid. Dynamics.
16(2), 119-128, 2002.
[3] D. Arnold, F. Brezzi, M. Fortin, A stable finite element for the Stokes
equations,Calcolo 21(4),337-344, 1984.
[4] E. Clement, Dispertion de bulles et modifications du mouvement de la
phase porteuse dans des 'ecoulements tourbillonnaires, Phd Thesis, Institut
Nationale polytechnique de Toulouse, 1999.
[5] D. Legende, Quelques aspects des forces hydrodynamiques et des transferts
de chaleur sur une bulle sph'erique, Phd thesis, INP Toulouse, France,
1996.
[6] Ph. Guillaume, K. Sid Idris, Topological sensitivity and shape optimization
for the Stokes equations, SIAM J. Control Optim. 43(1), 1-31, 2004.
[7] M. Hassine, S. Jan, M. Masmoudi, From differential calculus to 0 − 1
topological optimization, SIAM J. Cont. Optim. 45(6), 1965-1987, 2007.
[8] M. Hassine, M. Masmoudi, The topological asymptotic expansion for the
Quasi-Stokes problem, ESAIM, COCV J. 10(4), 478-504, 2004.
[9] M. Ishii, Thermo-fluid dynamic theory of a two-phase flow, Collection de
la direction des 'etudes de recherche d-'electricit'e de france, EYROLLES,
1975.
[10] J. Sokolowski, A. Zochowski, On the topological derivative in shape
optimization, SIAM J. Control Optim. 37(4) ,1251-1272 ,1999.