Identifying Dry Years by Using the Dependable Rainfall Index and Its Effects on the Olive Crop in Roudbar, Gilan, South Western of Caspian Sea

Drought is one of the most important natural disasters which is probable to occur in all regions with completely different climates and in addition to causing death. It results in many economic losses and social consequences. For this reason. Studying the effects and losses caused by drought which include limitation or shortage of agricultural and drinking water resources. Decreased rainfall and increased evapotranspiration. Limited plant growth and decreased agricultural products. Especially those of dry-farming. Lower levels of surface and ground waters and increased immigrations. Etc. in the country is statistical period (1988-2007) for six stations in Roudbar town were used for statistical analysis and calculating humid and dry years. The dependable rainfall index (DRI) was the main method used in this research. Results showed that during the said statistical period and also during the years 1996-1998 and 2007. more than half of the stations had faced drought. With consideration of the conducted studies. Drawing diagrams and comparing the available data with those of dry and humid years it was found that drought affected agricultural products (e.g.olive) in a way that during the year 1996 1996 drought. Olive groves of Roudbar suffered the greatest damages. Whereupon about 70% of the crops were lost.

An Empirical Study of Taiwan-s Hospital Foundation Investment in Corporate Social Responsibility and Financial Performance

Corporate Social Responsibility (CSR) has become a new trend of business governance. Few research studies on CSR published in Taiwanese academia, especially for medical settings, we were interested in probing the relationship of CSR and financial performance in medical settings in Taiwan. The results illustrate that: (1) a time delay effect exists with a lag between CSR effort and its performance in the hospital foundation, (2) input into the internal domains of CSR will be helpful to improve employee productivity in the hospital foundation, and (3) input into the external domains of CSR will be helpful in improving financial performance in the hospital foundation. This study overviews CSR in the medical industry in Taiwan and the relationship of CSR and financial performance. Discussions of possible implications from the study results are applied to consult the CSR concept that will be transferred into a business strategy for the organization manager.

FEA for Transient Responses of an S-Shaped Force Transducer with a Viscoelastic Absorber Using a Nonlinear Complex Spring

To compute dynamic characteristics of nonlinear viscoelastic springs with elastic structures having huge degree-of-freedom, Yamaguchi proposed a new fast numerical method using finite element method [1]-[2]. In this method, restoring forces of the springs are expressed using power series of their elongation. In the expression, nonlinear hysteresis damping is introduced. In this expression, nonlinear complex spring constants are introduced. Finite element for the nonlinear spring having complex coefficients is expressed and is connected to the elastic structures modeled by linear solid finite element. Further, to save computational time, the discrete equations in physical coordinate are transformed into the nonlinear ordinary coupled equations using normal coordinate corresponding to linear natural modes. In this report, the proposed method is applied to simulation for impact responses of a viscoelastic shock absorber with an elastic structure (an S-shaped structure) by colliding with a concentrated mass. The concentrated mass has initial velocities and collides with the shock absorber. Accelerations of the elastic structure and the concentrated mass are measured using Levitation Mass Method proposed by Fujii [3]. The calculated accelerations from the proposed FEM, corresponds to the experimental ones. Moreover, using this method, we also investigate dynamic errors of the S-shaped force transducer due to elastic mode in the S-shaped structure.

On the AC-Side Interface Filter in Three-Phase Shunt Active Power Filter Systems

The proper selection of the AC-side passive filter interconnecting the voltage source converter to the power supply is essential to obtain satisfactory performances of an active power filter system. The use of the LCL-type filter has the advantage of eliminating the high frequency switching harmonics in the current injected into the power supply. This paper is mainly focused on analyzing the influence of the interface filter parameters on the active filtering performances. Some design aspects are pointed out. Thus, the design of the AC interface filter starts from transfer functions by imposing the filter performance which refers to the significant current attenuation of the switching harmonics without affecting the harmonics to be compensated. A Matlab/Simulink model of the entire active filtering system including a concrete nonlinear load has been developed to examine the system performances. It is shown that a gamma LC filter could accomplish the attenuation requirement of the current provided by converter. Moreover, the existence of an optimal value of the grid-side inductance which minimizes the total harmonic distortion factor of the power supply current is pointed out. Nevertheless, a small converter-side inductance and a damping resistance in series with the filter capacitance are absolutely needed in order to keep the ripple and oscillations of the current at the converter side within acceptable limits. The effect of change in the LCL-filter parameters is evaluated. It is concluded that good active filtering performances can be achieved with small values of the capacitance and converter-side inductance.

Artificial Intelligence Techniques Applications for Power Disturbances Classification

Artificial Intelligence (AI) methods are increasingly being used for problem solving. This paper concerns using AI-type learning machines for power quality problem, which is a problem of general interest to power system to provide quality power to all appliances. Electrical power of good quality is essential for proper operation of electronic equipments such as computers and PLCs. Malfunction of such equipment may lead to loss of production or disruption of critical services resulting in huge financial and other losses. It is therefore necessary that critical loads be supplied with electricity of acceptable quality. Recognition of the presence of any disturbance and classifying any existing disturbance into a particular type is the first step in combating the problem. In this work two classes of AI methods for Power quality data mining are studied: Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). We show that SVMs are superior to ANNs in two critical respects: SVMs train and run an order of magnitude faster; and SVMs give higher classification accuracy.

Determination and Assessment of Ground Motion and Spectral Parameters for Iran

Many studies have been conducted for derivation of attenuation relationships worldwide, however few relationships have been developed to use for the seismic region of Iranian plateau and only few of these studies have been conducted for derivation of attenuation relationships for parameters such as uniform duration. Uniform duration is the total time during which the acceleration is larger than a given threshold value (default is 5% of PGA). In this study, the database was same as that used previously by Ghodrati Amiri et al. (2007) with same correction methods for earthquake records in Iran. However in this study, records from earthquakes with MS< 4.0 were excluded from this database, each record has individually filtered afterward, and therefore the dataset has been expanded. These new set of attenuation relationships for Iran are derived based on tectonic conditions with soil classification into rock and soil. Earthquake parameters were chosen to be hypocentral distance and magnitude in order to make it easier to use the relationships for seismic hazard analysis. Tehran is the capital city of Iran wit ha large number of important structures. In this study, a probabilistic approach has been utilized for seismic hazard assessment of this city. The resulting uniform duration against return period diagrams are suggested to be used in any projects in the area.

Consensus on Climate Change Adaptation among Government and Populace

Observations and long-term trends indicate that climate change impacts would be significant and affects Taiwan directly and severely. Taiwan engages not only in mitigation, but also in adaptation. However, there are cognitive gaps on adaptation between government and populace. Besides, a vision of zero-carbon and renewable energy 100% will be adopted in future. Therefore, the objectives of this article are to 1) hold a National Forum for knowing differences between the strategies of zero-carbon and renewable energy 100% and cognitions of general populace, and 2) plan a clear roadmap for the vision, strategy, and measures. In this forum, we set 5 group topics, 5 presumed themes, and issues mentioned review for concluding the critical issues. Finally, there are 4 strategies and 14 critical issues which correlate with the vision and strategy of government and the cognition of the general populace.

Heterogeneity-Aware Load Balancing for Multimedia Access over Wireless LAN Hotspots

Wireless LAN (WLAN) access in public hotspot areas becomes popular in the recent years. Since more and more multimedia information is available in the Internet, there is an increasing demand for accessing multimedia information through WLAN hotspots. Currently, the bandwidth offered by an IEEE 802.11 WLAN cannot afford many simultaneous real-time video accesses. A possible way to increase the offered bandwidth in a hotspot is the use of multiple access points (APs). However, a mobile station is usually connected to the WLAN AP with the strongest received signal strength indicator (RSSI). The total consumed bandwidth cannot be fairly allocated among those APs. In this paper, we will propose an effective load-balancing scheme via the support of the IAPP and SNMP in APs. The proposed scheme is an open solution and doesn-t need any changes in both wireless stations and APs. This makes load balancing possible in WLAN hotspots, where a variety of heterogeneous mobile devices are employed.

Numerical Analysis of a Centrifugal Fan for Improved Performance using Splitter Vanes

The flow field in a centrifugal fan is highly complex with flow reversal taking place on the suction side of impeller and diffuser vanes. Generally performance of the centrifugal fan could be enhanced by judiciously introducing splitter vanes so as to improve the diffusion process. An extensive numerical whole field analysis on the effect of splitter vanes placed in discrete regions of suspected separation points is possible using CFD. This paper examines the effect of splitter vanes corresponding to various geometrical locations on the impeller and diffuser. The analysis shows that the splitter vanes located near the diffuser exit improves the static pressure recovery across the diffusing domain to a larger extent. Also it is found that splitter vanes located at the impeller trailing edge and diffuser leading edge at the mid-span of the circumferential distance between the blades show a marginal improvement in the static pressure recovery across the fan. However, splitters provided near to the suction side of the impeller trailing edge (25% of the circumferential gap between the impeller blades towards the suction side), adversely affect the static pressure recovery of the fan.

Dynamic Inverted Index Maintenance

The majority of today's IR systems base the IR task on two main processes: indexing and searching. There exists a special group of dynamic IR systems where both processes (indexing and searching) happen simultaneously; such a system discards obsolete information, simultaneously dealing with the insertion of new in¬formation, while still answering user queries. In these dynamic, time critical text document databases, it is often important to modify index structures quickly, as documents arrive. This paper presents a method for dynamization which may be used for this task. Experimental results show that the dynamization process is possible and that it guarantees the response time for the query operation and index actualization.

How Can We Carry Out Green Incentives Most Efficiently?

Green incentives are included in the “American Recovery and Reinvestment Act of 2009" (ARRA). It is, however, unclear how these government incentives can be carried out most effectively according to market-based principles and if they can serve as a catalyst for an accelerated green transformation and an ultimate solution to the current U.S. and global economic and financial crisis. The article will compare the existing U.S. green economic policies with those in Germany, identify problems, and suggest improvements to allow the green stimulus incentives to achieve the best results in the process of an accelerated green transformation. The author argues that the current U.S. green stimulus incentives can only be most successful if they are carried out as part of a visionary, comprehensive, long-term, and consistent strategy of the green economic transformation.

Nonlinear Optimal Line-Of-Sight Stabilization with Fuzzy Gain-Scheduling

A nonlinear optimal controller with a fuzzy gain scheduler has been designed and applied to a Line-Of-Sight (LOS) stabilization system. Use of Linear Quadratic Regulator (LQR) theory is an optimal and simple manner of solving many control engineering problems. However, this method cannot be utilized directly for multigimbal LOS systems since they are nonlinear in nature. To adapt LQ controllers to nonlinear systems at least a linearization of the model plant is required. When the linearized model is only valid within the vicinity of an operating point a gain scheduler is required. Therefore, a Takagi-Sugeno Fuzzy Inference System gain scheduler has been implemented, which keeps the asymptotic stability performance provided by the optimal feedback gain approach. The simulation results illustrate that the proposed controller is capable of overcoming disturbances and maintaining a satisfactory tracking performance.

Analysis of Phosphate in Wastewater Using an Autonomous Microfluidics-Based Analyser

A portable sensor for the analysis of phosphate in aqueous samples has been developed. The sensor incorporates microfluidic technology, colorimetric detection, and wireless communications into a compact and rugged portable device. The detection method used is the molybdenum yellow method, in which a phosphate-containing sample is mixed with a reagent containing ammonium metavanadate and ammonium molybdate in an acidic medium. A yellow-coloured compound is generated and the absorption of this compound is measured using a light emitting diode (LED) light source and a photodiode detector. The absorption is directly proportional to the phosphate concentration in the original sample. In this paper we describe the application of this phosphate sensor to the analysis of wastewater at a municipal wastewater treatment plant in Co. Kildare, Ireland.

An E-Learning Tool for The Self-Study of Mathematics for the CPE Examination

In this paper, we give an overview of an online elearning tool which has been developed for kids aged from nine to eleven years old in Mauritius for the self-study of Mathematics in order to prepare them for the CPE examination. The software does not intend to render obsolete the existing pedagogical approaches. Nowadays, the teaching-learning process is mainly focused towards the class-room model. Moreover, most of the e-learning platforms that exist are simply static ways of delivering resources using the internet. There is nearly no interaction between the learner and the tool. Our application will enable students to practice exercises online and also work out sample examination papers. Another interesting feature is that the kid will not have to wait for someone to correct the work as the correction will be done online and on the spot. Additional feedback is also provided for some exercises.

High Efficiency Class-F Power Amplifier Design

Due to the high increase in and demand for a wide assortment of applications that require low-cost, high-efficiency, and compact systems, RF power amplifiers are considered the most critical design blocks and power consuming components in wireless communication, TV transmission, radar, and RF heating. Therefore, much research has been carried out in order to improve the performance of power amplifiers. Classes-A, B, C, D, E and F are the main techniques for realizing power amplifiers. An implementation of high efficiency class-F power amplifier with Gallium Nitride (GaN) High Electron Mobility Transistor (HEMT) was realized in this paper. The simulation and optimization of the class-F power amplifier circuit model was undertaken using Agilent’s Advanced Design system (ADS). The circuit was designed using lumped elements.

Effect of Different Conditions on the Sorption Behavior of Co2+ Using Celatom- ZeoliteY Composite

Composite of Celatom-ZeoliteY (Cel-ZY) was used to remove cobalt ion from an aqueous solution using batch mode. ZeoliteY has successfully superimposed on Celatom FW-14 surface using hydrothermal treatment .The product was synthesized as a novel of hierarchical porous material. It was observed from the results that Cel-ZY has higher ability to remove cobalt ions than the pure ZeoliteY powder (PZY) synthesized under the same conditions. Several parameters were studied in this project to investigate the effect of removal cobalt ion such as pH and initial cobalt concentration. It was clearly observed that the uptake of cobalt ions was affected with increase these parameters. The results proved that the product can be used effectively to remove Co2+ ions from wastewater as an environmentally friendly alternative.

Study of Stress Wave Propagation with NHDMOC

MOC (method of cell) is a new method of investigating wave propagating in material with periodic microstructure, and can reflect the effect of microstructure. Wave propagation in periodically laminated medium consisting of linearly elastic layers can be treated as a special application of this method. In this paper, it was used to simulate the dynamic response of carbon-phenolic to impulsive loading under certain boundary conditions. From the comparison between the results obtained from this method and the exact results based on propagator matrix theory, excellent agreement is achieved. Conclusion can be made that the oscillation periodicity is decided by the thickness of sub-cells. In the end, the NHDMOC method, which permits studying stress wave propagation with one dimensional strain, was applied to study the one-dimensional stress wave propagation. In this paper, the ZWT nonlinear visco-elastic constitutive relationship with 7 parameters, NHDMOC, and corresponding equations were deduced. The equations were verified, comparing the elastic stress wave propagation in SHPB with, respectively, the elastic and the visco-elastic bar. Finally the dispersion and attenuation of stress wave in SHPB with visco-elastic bar was studied.

Simulation of Snow Covers Area by a Physical based Model

Snow cover is an important phenomenon in hydrology, hence modeling the snow accumulation and melting is an important issue in places where snowmelt significantly contributes to runoff and has significant effect on water balance. The physics-based models are invariably distributed, with the basin disaggregated into zones or grid cells. Satellites images provide valuable data to verify the accuracy of spatially distributed model outputs. In this study a spatially distributed physically based model (WetSpa) was applied to predict snow cover and melting in the Latyan dam watershed in Iran. Snowmelt is simulated based on an energy balance approach. The model is applied and calibrated with one year of observed daily precipitation, air temperature, windspeed, and daily potential evaporation. The predicted snow-covered area is compared with remotely sensed images (MODIS). The results show that simulated snow cover area SCA has a good agreement with satellite image snow cover area SCA from MODIS images. The model performance is also tested by statistical and graphical comparison of simulated and measured discharges entering the Latyan dam reservoir.

Analytical Cutting Forces Model of Helical Milling Operations

Helical milling operations are used to generate or enlarge boreholes by means of a milling tool. The bore diameter can be adjusted through the diameter of the helical path. The kinematics of helical milling on a three axis machine tool is analysed firstly. The relationships between processing parameters, cutting tool geometry characters with machined hole feature are formulated. The feed motion of the cutting tool has been decomposed to plane circular feed and axial linear motion. In this paper, the time varying cutting forces acted on the side cutting edges and end cutting edges of the flat end cylinder miller is analysed using a discrete method separately. These two components then are combined to produce the cutting force model considering the complicated interaction between the cutters and workpiece. The time varying cutting force model describes the instantaneous cutting force during processing. This model could be used to predict cutting force, calculate statics deflection of cutter and workpiece, and also could be the foundation of dynamics model and predicting chatter limitation of the helical milling operations.

The Response Relation between Climate Change and NDVI over the Qinghai-Tibet plateau

Based on a long-term vegetation index dataset of NDVI and meteorological data from 68 meteorological stations in the Qinghai-Tibet plateau and their relations with major climate factors were analyzed. The results show the following: 1) The linear trends of temperature in the Qinghai-Tibet plateau indicate that the temperature in the plateau generally increased, but it rose faster in the last 20 years. 2) The most significant NDVI increase occurred in the eastern and southern plateau. However, the western and northern plateau demonstrate a decreasing trend. 3) There is a significant positive linear correlation between NDVI and temperature and a negative correlation between NDVI and mean wind speed. However, no significant statistical relationship was found between NDVI and relative humidity, precipitation or sunshine duration.4) The changes in NDVI for the plateau are driven by temperature-precipitation, but for the desert and forest areas, the relation changes to precipitation-temperature-wind velocity and wind velocity-temperature-precipitation.