Intellectual Capital and Competitive Advantage: An Analysis of the Biotechnology Industry

Intellectual capital measurement is a central aspect of knowledge management. The measurement and the evaluation of intangible assets play a key role in allowing an effective management of these assets as sources of competitiveness. For these reasons, managers and practitioners need conceptual and analytical tools taking into account the unique characteristics and economic significance of Intellectual Capital. Following this lead, we propose an efficiency and productivity analysis of Intellectual Capital, as a determinant factor of the company competitive advantage. The analysis is carried out by means of Data Envelopment Analysis (DEA) and Malmquist Productivity Index (MPI). These techniques identify Bests Practice companies that have accomplished competitive advantage implementing successful strategies of Intellectual Capital management, and offer to inefficient companies development paths by means of benchmarking. The proposed methodology is employed on the Biotechnology industry in the period 2007-2010.

Synchronization of Oestrus in Goats with Progestogen Sponges and Short Term Combined FGA, PGF2α Protocols

The study aimed to evaluated the reproductive performance response to short term oestrus synchronization during the transition period. One hundred and sixty-five indigenous multiparous non-lactating goats were subdivided into the following six treatment groups for oestrus synchronization: NT control Group (N= 30), Fe-21d, FGA vaginal sponge for 21days+eCG at 19thd; FPe- 11d, FGA 11d + PGF2α and eCG at 9th d; FPe-10d, FGA 10d+ PGF2α and eCG at 8th d; FPe-9d, FGA 9d +PGF2α and eCG at 7thd; PFe-5d, PGF2α at d0 + FGA 5d + eCG at 5thd. The goats were natural mated (1 male/6 females). Fecundity rates (n. births /n. females treated x 100) were statistically higher (P < 0.05) in short term FPe-9d (157.9%), FPe- 11d (115.4%), FPe-10d (111.1%) and PFe-5d (107.7%) groups compared to the NT control Group (66.7%).

DC Link Floating for Grid Connected PV Converters

Nowadays there are several grid connected converter in the grid system. These grid connected converters are generally the converters of renewable energy sources, industrial four quadrant drives and other converters with DC link. These converters are connected to the grid through a three phase bridge. The standards prescribe the maximal harmonic emission which could be easily limited with high switching frequency. The increased switching losses can be reduced to the half with the utilization of the wellknown Flat-top modulation. The suggested control method is the expansion of the Flat-top modulation with which the losses could be also reduced to the half compared to the Flat-top modulation. Comparing to traditional control these requirements can be simultaneously satisfied much better with the DLF (DC Link Floating) method.

A Visual Educational Modeling Language to Help Teachers in Learning Scenario Design

The success of an e-learning system is highly dependent on the quality of its educational content and how effective, complete, and simple the design tool can be for teachers. Educational modeling languages (EMLs) are proposed as design languages intended to teachers for modeling diverse teaching-learning experiences, independently of the pedagogical approach and in different contexts. However, most existing EMLs are criticized for being too abstract and too complex to be understood and manipulated by teachers. In this paper, we present a visual EML that simplifies the process of designing learning scenarios for teachers with no programming background. Based on the conceptual framework of the activity theory, our resulting visual EML focuses on using Domainspecific modeling techniques to provide a pedagogical level of abstraction in the design process.

Enhancements in Blended e-Learning Management System

A learning management system (commonly abbreviated as LMS) is a software application for the administration, documentation, tracking, and reporting of training programs, classroom and online events, e-learning programs, and training content (Ellis 2009). (Hall 2003) defines an LMS as \"software that automates the administration of training events. All Learning Management Systems manage the log-in of registered users, manage course catalogs, record data from learners, and provide reports to management\". Evidence of the worldwide spread of e-learning in recent years is easy to obtain. In April 2003, no fewer than 66,000 fully online courses and 1,200 complete online programs were listed on the TeleCampus portal from TeleEducation (Paulsen 2003). In the report \" The US market in the Self-paced eLearning Products and Services:2010-2015 Forecast and Analysis\" The number of student taken classes exclusively online will be nearly equal (1% less) to the number taken classes exclusively in physical campuses. Number of student taken online course will increase from 1.37 million in 2010 to 3.86 million in 2015 in USA. In another report by The Sloan Consortium three-quarters of institutions report that the economic downturn has increased demand for online courses and programs.

Power System Security Constrained Economic Dispatch Using Real Coded Quantum Inspired Evolution Algorithm

This paper presents a new optimization technique based on quantum computing principles to solve a security constrained power system economic dispatch problem (SCED). The proposed technique is a population-based algorithm, which uses some quantum computing elements in coding and evolving groups of potential solutions to reach the optimum following a partially directed random approach. The SCED problem is formulated as a constrained optimization problem in a way that insures a secure-economic system operation. Real Coded Quantum-Inspired Evolution Algorithm (RQIEA) is then applied to solve the constrained optimization formulation. Simulation results of the proposed approach are compared with those reported in literature. The outcome is very encouraging and proves that RQIEA is very applicable for solving security constrained power system economic dispatch problem (SCED).

Adaptive Total Variation Based on Feature Scale

The widely used Total Variation de-noising algorithm can preserve sharp edge, while removing noise. However, since fixed regularization parameter over entire image, small details and textures are often lost in the process. In this paper, we propose a modified Total Variation algorithm to better preserve smaller-scaled features. This is done by allowing an adaptive regularization parameter to control the amount of de-noising in any region of image, according to relative information of local feature scale. Experimental results demonstrate the efficient of the proposed algorithm. Compared with standard Total Variation, our algorithm can better preserve smaller-scaled features and show better performance.

PI Control for Positive Output Elementary Super Lift Luo Converter

The object of this paper is to design and analyze a proportional – integral (PI) control for positive output elementary super lift Luo converter (POESLLC), which is the start-of-the-art DC-DC converter. The positive output elementary super lift Luo converter performs the voltage conversion from positive source voltage to positive load voltage. This paper proposes a development of PI control capable of providing the good static and dynamic performance compared to proportional – integralderivative (PID) controller. Using state space average method derives the dynamic equations describing the positive output elementary super lift luo converter and PI control is designed. The simulation model of the positive output elementary super lift Luo converter with its control circuit is implemented in Matlab/Simulink. The PI control for positive output elementary super lift Luo converter is tested for transient region, line changes, load changes, steady state region and also for components variations.

A Robust Controller for Output Variance Reduction and Minimum Variance with Application on a Permanent Field DC-Motor

In this paper, we present an experimental testing for a new algorithm that determines an optimal controller-s coefficients for output variance reduction related to Linear Time Invariant (LTI) Systems. The algorithm features simplicity in calculation, generalization to minimal and non-minimal phase systems, and could be configured to achieve reference tracking as well as variance reduction after compromising with the output variance. An experiment of DCmotor velocity control demonstrates the application of this new algorithm in designing the controller. The results show that the controller achieves minimum variance and reference tracking for a preset velocity reference relying on an identified model of the motor.

Minimizing Risk Costs through Optimal Responses in NPD Projects

In rapidly changing market environment, firms are investing a lot of time and resources into new product development (NPD) projects to make profit and to obtain competitive advantage. However, failure rate of NPD projects is becoming high due to various internal and external risks which hinder successful NPD projects. To reduce the failure rate, it is critical that risks have to be managed effectively and efficiently through good strategy, and treated by optimal responses to minimize risk cost. Four strategies are adopted to handle the risks in this study. The optimal responses are characterized by high reduction of risk costs with high efficiency. This study suggests a framework to decide the optimal responses considering the core risks, risk costs, response efficiency and response costs for successful NPD projects. Both binary particles warm optimization (BPSO) and multi-objective particle swarm optimization (MOPSO) methods are mainly used in the framework. Although several limitations exist in use for real industries, the frame work shows good strength for handling the risks with highly scientific ways through an example.

Regular Data Broadcasting Plan with Grouping in Wireless Mobile Environment

The broadcast problem including the plan design is considered. The data are inserted and numbered at predefined order into customized size relations. The server ability to create a full, regular Broadcast Plan (RBP) with single and multiple channels after some data transformations is examined. The Regular Geometric Algorithm (RGA) prepares a RBP and enables the users to catch their items avoiding energy waste of their devices. Moreover, the Grouping Dimensioning Algorithm (GDA) based on integrated relations can guarantee the discrimination of services with a minimum number of channels. This last property among the selfmonitoring, self-organizing, can be offered by servers today providing also channel availability and less energy consumption by using smaller number of channels. Simulation results are provided.

Connectivity Characteristic of Transcription Factor

Transcription factors are a group of proteins that helps for interpreting the genetic information in DNA. Protein-protein interactions play a major role in the execution of key biological functions of a cell. These interactions are represented in the form of a graph with nodes and edges. Studies have showed that some nodes have high degree of connectivity and such nodes, known as hub nodes, are the inevitable parts of the network. In the present paper a method is proposed to identify hub transcription factor proteins using sequence information. On a complete data set of transcription factor proteins available from the APID database, the proposed method showed an accuracy of 77%, sensitivity of 79% and specificity of 76%.

The Statistical Properties of Filtered Signals

In this paper, the statistical properties of filtered or convolved signals are considered by deriving the resulting density functions as well as the exact mean and variance expressions given a prior knowledge about the statistics of the individual signals in the filtering or convolution process. It is shown that the density function after linear convolution is a mixture density, where the number of density components is equal to the number of observations of the shortest signal. For circular convolution, the observed samples are characterized by a single density function, which is a sum of products.

Integrating Hedgerow into Town Planning: A Framework for Sustainable Residential Development

The vast rural landscape in the southern United States is conspicuously characterized by the hedgerow trees or groves. The patchwork landscape of fields surrounded by high hedgerows is a traditional and familiar feature of the American countryside. Hedgerows are in effect linear strips of trees, groves, or woodlands, which are often critical habitats for wildlife and important for the visual quality of the landscape. As landscape interfaces, hedgerows define the spaces in the landscape, give the landscape life and meaning, and enrich ecologies and cultural heritages of the American countryside. Although hedgerows were originally intended as fences and to mark property and townland boundaries, they are not merely the natural or man-made additions to the landscape--they have gradually become “naturalized" into the landscape, deeply rooted in the rural culture, and now formed an important component of the southern American rural environment. However, due to the ever expanding real estate industry and high demand for new residential development, substantial areas of authentic hedgerow landscape in the southern United States are being urbanized. Using Hudson Farm as an example, this study illustrated guidelines of how hedgerows can be integrated into town planning as green infrastructure and landscape interface to innovate and direct sustainable land use, and suggest ways in which such vernacular landscapes can be preserved and integrated into new development without losing their contextual inspiration.

Determination of Chemical Oxygen Demand in Spent Caustic by Potentiometric Determination

Measurement of the COD of a spent caustic solution involves firstly digestion of a test sample with dichromate solution and secondly measurement of dichromate remained by titration by ferrous ammonium sulfate [FAS] to an end point. In this paper we study by a potentiometric end point with Ag/AgCl reference electrode and gold rode electrode. The potentiometric end point is sharp and easily identified especially for the samples with high turbidity and color that other methods such as colorimetric in this type of sample do not result in high precision. Because interim of titration responds quickly to potential changes within the [Cr+6/Cr+3& Fe+2/Fe+3] solution producing stable readings that is lead to accurate COD measurement. Finally results are compared with data determined using colorimetric method for standard samples. It is shown that the potentiometric end point titration with gold rode electrode can be used with equal or better facility

Impovement of a Label Extraction Method for a Risk Search System

This paper proposes an improvement method of classification efficiency in a classification model. The model is used in a risk search system and extracts specific labels from articles posted at bulletin board sites. The system can analyze the important discussions composed of the articles. The improvement method introduces ensemble learning methods that use multiple classification models. Also, it introduces expressions related to the specific labels into generation of word vectors. The paper applies the improvement method to articles collected from three bulletin board sites selected by users and verifies the effectiveness of the improvement method.

Applying Genetic Algorithms for Inventory Lot-Sizing Problem with Supplier Selection under Storage Space

The objective of this research is to calculate the optimal inventory lot-sizing for each supplier and minimize the total inventory cost which includes joint purchase cost of the products, transaction cost for the suppliers, and holding cost for remaining inventory. Genetic algorithms (GAs) are applied to the multi-product and multi-period inventory lot-sizing problems with supplier selection under storage space. Also a maximum storage space for the decision maker in each period is considered. The decision maker needs to determine what products to order in what quantities with which suppliers in which periods. It is assumed that demand of multiple products is known over a planning horizon. The problem is formulated as a mixed integer programming and is solved with the GAs. The detailed computation results are presented.

Fractional Delay FIR Filters Design with Enhanced Differential Evolution

Fractional delay FIR filters design method based on the differential evolution algorithm is presented. Differential evolution is an evolutionary algorithm for solving a global optimization problems in the continuous search space. In the proposed approach, an evolutionary algorithm is used to determine the coefficients of a fractional delay FIR filter based on the Farrow structure. Basic differential evolution is enhanced with a restricted mating technique, which improves the algorithm performance in terms of convergence speed and obtained solution. Evolutionary optimization is carried out by minimizing an objective function which is based on the amplitude response and phase delay errors. Experimental results show that the proposed algorithm leads to a reduction in the amplitude response and phase delay errors relative to those achieved with the Least-Squares method.

Kalman Filter Based Adaptive Reduction of Motion Artifact from Photoplethysmographic Signal

Artifact free photoplethysmographic (PPG) signals are necessary for non-invasive estimation of oxygen saturation (SpO2) in arterial blood. Movement of a patient corrupts the PPGs with motion artifacts, resulting in large errors in the computation of Sp02. This paper presents a study on using Kalman Filter in an innovative way by modeling both the Artillery Blood Pressure (ABP) and the unwanted signal, additive motion artifact, to reduce motion artifacts from corrupted PPG signals. Simulation results show acceptable performance regarding LMS and variable step LMS, thus establishing the efficacy of the proposed method.

Improved Hill Climbing and Simulated Annealing Algorithms for Size Optimization of Trusses

Truss optimization problem has been vastly studied during the past 30 years and many different methods have been proposed for this problem. Even though most of these methods assume that the design variables are continuously valued, in reality, the design variables of optimization problems such as cross-sectional areas are discretely valued. In this paper, an improved hill climbing and an improved simulated annealing algorithm have been proposed to solve the truss optimization problem with discrete values for crosssectional areas. Obtained results have been compared to other methods in the literature and the comparison represents that the proposed methods can be used more efficiently than other proposed methods