Cost-Effective Design of Space Structures Joints: A Review

In construction of any structure, the aesthetic and utility values should be considered in such a way as to make the structure cost-effective. Most structures are composed of elements and joints which are very critical in any skeletal space structure because they majorly determine the performance of the structure. In early times, most space structures were constructed using rigid joints which had the advantage of better performing structures as compared to pin-jointed structures but with the disadvantage of requiring all the construction work to be done on site. The discovery of semi-rigid joints now enables connections to be prefabricated and quickly assembled on site while maintaining good performance. In this paper, cost-effective is discussed basing on strength of connectors at the joints, buckling of joints and overall structure, and the effect of initial geometrical imperfections. Several existing joints are reviewed by classifying them into categories and discussing where they are most suited and how they perform structurally. Also, finite element modeling using ABAQUS is done to determine the buckling behavior. It is observed that some joints are more economical than others. The rise to span ratio and imperfections are also found to affect the buckling of the structures. Based on these, general principles that guide the design of cost-effective joints and structures are discussed.

Artificial Intelligence Techniques applied to Biomedical Patterns

Pattern recognition is the research area of Artificial Intelligence that studies the operation and design of systems that recognize patterns in the data. Important application areas are image analysis, character recognition, fingerprint classification, speech analysis, DNA sequence identification, man and machine diagnostics, person identification and industrial inspection. The interest in improving the classification systems of data analysis is independent from the context of applications. In fact, in many studies it is often the case to have to recognize and to distinguish groups of various objects, which requires the need for valid instruments capable to perform this task. The objective of this article is to show several methodologies of Artificial Intelligence for data classification applied to biomedical patterns. In particular, this work deals with the realization of a Computer-Aided Detection system (CADe) that is able to assist the radiologist in identifying types of mammary tumor lesions. As an additional biomedical application of the classification systems, we present a study conducted on blood samples which shows how these methods may help to distinguish between carriers of Thalassemia (or Mediterranean Anaemia) and healthy subjects.

Quantification of Heart Rate Variability: A Measure based on Unique Heart Rates

It is established that the instantaneous heart rate (HR) of healthy humans keeps on changing. Analysis of heart rate variability (HRV) has become a popular non invasive tool for assessing the activities of autonomic nervous system. Depressed HRV has been found in several disorders, like diabetes mellitus (DM) and coronary artery disease, characterised by autonomic nervous dysfunction. A new technique, which searches for pattern repeatability in a time series, is proposed specifically for the analysis of heart rate data. These set of indices, which are termed as pattern repeatability measure and pattern repeatability ratio are compared with approximate entropy and sample entropy. In our analysis, based on the method developed, it is observed that heart rate variability is significantly different for DM patients, particularly for patients with diabetic foot ulcer.

Multiple Object Tracking using Particle Swarm Optimization

This paper presents a particle swarm optimization (PSO) based approach for multiple object tracking based on histogram matching. To start with, gray-level histograms are calculated to establish a feature model for each of the target object. The difference between the gray-level histogram corresponding to each particle in the search space and the target object is used as the fitness value. Multiple swarms are created depending on the number of the target objects under tracking. Because of the efficiency and simplicity of the PSO algorithm for global optimization, target objects can be tracked as iterations continue. Experimental results confirm that the proposed PSO algorithm can rapidly converge, allowing real-time tracking of each target object. When the objects being tracked move outside the tracking range, global search capability of the PSO resumes to re-trace the target objects.

An Improved Resource Discovery Approach Using P2P Model for Condor: A Grid Middleware

Resource Discovery in Grids is critical for efficient resource allocation and management. Heterogeneous nature and dynamic availability of resources make resource discovery a challenging task. As numbers of nodes are increasing from tens to thousands, scalability is essentially desired. Peer-to-Peer (P2P) techniques, on the other hand, provide effective implementation of scalable services and applications. In this paper we propose a model for resource discovery in Condor Middleware by using the four axis framework defined in P2P approach. The proposed model enhances Condor to incorporate functionality of a P2P system, thus aim to make Condor more scalable, flexible, reliable and robust.

Analysis on the Relationship between Rating and Economic Growth for the European Union Emergent Economies

This article analyses the relationship between sovereign credit risk rating and gross domestic product for Central and Eastern European Countries for the period 1996 – 2010. In order to study the metioned relationship, we have used a numerical transformation of the risk qualification, thus: we marked 0 the lowest risk; then, we went on ascending, with a pace of 5, up to the score of 355 corresponding to the maximum risk. The used method of analysis is that of econometric modelling with EViews 7.0. programme. This software allows the analysis of data into a pannel type system, involving a mix of periods of time and series of data for different entities. The main conclusion of the work is the one confirming the negative relationship between the sovereign credit risk and the gross domestic product for the Central European and Eastern countries during the reviewed period.

A Semi-Classical Signal Analysis Method for the Analysis of Turbomachinery Flow Unsteadiness

This paper presents the use of a semi-classical signal analysis method that has been developed recently for the analysis of turbomachinery flow unsteadiness. We will focus on the correlation between theSemi-Classical Signal Analysis parameters and some physical parameters in relation with turbomachinery features. To demonstrate the potential of the proposed approach, a static pressure signal issued from a rotor/stator interaction of a centrifugal pump is studied. Several configurations of the pump are compared.

Memory Leak Detection in Distributed System

Due to memory leaks, often-valuable system memory gets wasted and denied for other processes thereby affecting the computational performance. If an application-s memory usage exceeds virtual memory size, it can leads to system crash. Current memory leak detection techniques for clusters are reactive and display the memory leak information after the execution of the process (they detect memory leak only after it occur). This paper presents a Dynamic Memory Monitoring Agent (DMMA) technique. DMMA framework is a dynamic memory leak detection, that detects the memory leak while application is in execution phase, when memory leak in any process in the cluster is identified by DMMA it gives information to the end users to enable them to take corrective actions and also DMMA submit the affected process to healthy node in the system. Thus provides reliable service to the user. DMMA maintains information about memory consumption of executing processes and based on this information and critical states, DMMA can improve reliability and efficaciousness of cluster computing.

A Short Form of the Taiwan Health Literacy Scale (THLS) for Chinese-Speaking Adults

The Taiwan Health Literacy Scale (THLS) was developed to cope with the need of measuring heath literacy of Chinese-speaking adults in Taiwan. Although the scale was proven having good reliability and validity, it was not popularly adopted by the practitioners due to the length, and the time required completing. Based on the THLS, this research further invited healthcare professionals to review the original scale for a possible shorten work. Under the logic of THLS, the research adopted an analytic hierarchy process technique to consolidate the healthcare experts- assessments to shorten the original scale. There are fifteen items out of the original 66 items were identified having higher loadings. Confirmed by the experts and passed a pilot test with 40 undergraduate students, a short form of THLS is then introduced. This research then used 839 samples from the major cities of the Hua-lien county in the eastern part of Taiwan to test the reliability and validity of this new scale. The reliability of the scale is high and acceptable. The current scale is also highly correlated with the original, of which provide evidence for the validity of the scale.

Robust Control for Discrete-Time Sector Bounded Systems with Time-Varying Delay

In this paper, we propose a robust controller design method for discrete-time systems with sector-bounded nonlinearities and time-varying delay. Based on the Lyapunov theory, delaydependent stabilization criteria are obtained in terms of linear matrix inequalities (LMIs) by constructing the new Lyapunov-Krasovskii functional and using some inequalities. A robust state feedback controller is designed by LMI framework and a reciprocally convex combination technique. The effectiveness of the proposed method is verified throughout a numerical example.

Throughput Analysis over Power Line Communication Channel in an Electric Noisy Scenario

Powerline Communications –PLC– as an alternative method for broadband networking, has the advantage of transmitting over channels already used for electrical distribution or even transmission. But these channels have been not designed with usual wired channels requirements for broadband applications such as stable impedance or known attenuation, and the network have to reject noises caused by electrical appliances that share the same channel. Noise control standards are difficult to complain or simply do not exist on Latin-American environments. This paper analyzes PLC throughput for home connectivity by probing noisy channel scenarios in a PLC network and the statistical results are shown.

Generalized Predictive Control of Batch Polymerization Reactor

This paper describes the application of a model predictive controller to the problem of batch reactor temperature control. Although a great deal of work has been done to improve reactor throughput using batch sequence control, the control of the actual reactor temperature remains a difficult problem for many operators of these processes. Temperature control is important as many chemical reactions are sensitive to temperature for formation of desired products. This controller consist of two part (1) a nonlinear control method GLC (Global Linearizing Control) to create a linear model of system and (2) a Model predictive controller used to obtain optimal input control sequence. The temperature of reactor is tuned to track a predetermined temperature trajectory that applied to the batch reactor. To do so two input signals, electrical powers and the flow of coolant in the coil are used. Simulation results show that the proposed controller has a remarkable performance for tracking reference trajectory while at the same time it is robust against noise imposed to system output.

Development of a Microsensor to Minimize Post Cataract Surgery Complications

This paper presents design and characterization of a microaccelerometer designated for integration into cataract surgical probe to detect hardness of different eye tissues during cataract surgery. Soft posterior lens capsule of eye can be easily damaged in comparison with hard opaque lens since the surgeon can not see directly behind cutting needle during the surgery. Presence of microsensor helps the surgeon to avoid rupturing posterior lens capsule which if occurs leads to severe complications such as glaucoma, infection, or even blindness. The microsensor having overall dimensions of 480 μm x 395 μm is able to deliver significant capacitance variations during encountered vibration situations which makes it capable to distinguish between different types of tissue. Integration of electronic components on chip ensures high level of reliability and noise immunity while minimizes space and power requirements. Physical characteristics and results on performance testing, proves integration of microsensor as an effective tool to aid the surgeon during this procedure.

Design and Implementation of Optimal Winner Determination Algorithm in Combinatorial e- Auctions

The one of best robust search technique on large scale search area is heuristic and meta heuristic approaches. Especially in issue that the exploitation of combinatorial status in the large scale search area prevents the solution of the problem via classical calculating methods, so such problems is NP-complete. in this research, the problem of winner determination in combinatorial auctions have been formulated and by assessing older heuristic functions, we solve the problem by using of genetic algorithm and would show that this new method would result in better performance in comparison to other heuristic function such as simulated annealing greedy approach.

A Study on the User Experience Design of Mobile Twitter Application

The number of people using SNS with their mobile devices is soaring. This research focuses on the Twitter service that has the most third-party applications and delved into the fact that there were not sufficient studies on the UX design aspects of Twitter applications. Among social network services which have emerged as a major social topic lately, this research try to analyze the UX design of the Twitter application which is also called micro-blogging service. Therefore this research sets its goal to draw components of the UX design aspect of the Tweeter application on which there are not enough analysis yet. Moreover, this research suggests improvement of mobile application which will assure better users- experience. In order to analyze the UX design aspect of the mobile twitter application, with relevant document and user research, evaluating factors of the UX Design which would affect users- experience were organized. The subjects for cases were selected among six paid and free social networking applications that had been consistently ranked from 1st to 100th in the Korean application store during May, 2012 after closely monitoring the rank. From May 15th to May 11th in 2012, in accordance with the evaluating standard, surveys were conducted in a form of interviews with 20 subjects who have used the Twitter application to find out problems and solutions for the UX design of the mobile Twitter application.

Effect of Cladding and Secondary Members on the Elastic Stability of Main Columns

The corrugated steel cladding used to cover most of steel buildings is considered as non-structural element. This research will reflect the effect of cladding as a shear diaphragm in increasing the normal elastic capacity of columns. This study is important because of the lack of information of the behavior of cladding and secondary members in various codes. Mathematical models for six different cases are carried by software. The results extracted from the program have been plotted showing the effects of different variables on the ultimate load of column. The variables considered in our research are the spacing between columns and the thickness of the corrugated sheet representing the sheet stiffness.

Mass Transfer of Palm Kernel Oil under Supercritical Conditions

The purpose of the study was to determine the amount of Palm Kernel Oil (PKO) extracted from a packed bed of palm kernels in a supercritical fluid extractor using supercritical carbon dioxide (SC-CO2) as an environmental friendly solvent. Further, the study sought to ascertain the values of the overall mass transfer coefficient (K) of PKO evaluation through a mass transfer model, at constant temperature of 50 °C, 60 °C, and 70 °C and pressures range from 27.6 MPa, 34.5 MPa, 41.4 MPa and 48.3 MPa respectively. Finally, the study also seeks to demonstrate the application of the overall mass transfer coefficient values in relation to temperature and pressure. The overall mass transfer coefficient was found to be dependent pressure at each constant temperature of 50 °C, 60 °C and 70 °C. The overall mass transfer coefficient for PKO in a packed bed of palm kernels was found to be in the range of 1.21X 10-4 m min-1 to 1.72 X 10-4 m min-1 for a constant temperature of 50 °C and in the range of 2.02 X 10-4 m min-1 to 2.43 X 10-4 m min-1 for a constant temperature of 60 °C. Similar increasing trend of the overall mass transfer coefficient from 1.77 X 10-4 m min-1 to 3.64 X 10-4 m min-1 was also observed at constant temperature of 70 °C within the same pressure range from 27.6 MPa to 48.3 MPa.

The Design and Development of Multimedia Pronunciation Learning Management System

The proposed Multimedia Pronunciation Learning Management System (MPLMS) in this study is a technology with profound potential for inducing improvement in pronunciation learning. The MPLMS optimizes the digitised phonetic symbols with the integration of text, sound and mouth movement video. The components are designed and developed in an online management system which turns the web to a dynamic user-centric collection of consistent and timely information for quality sustainable learning. The aim of this study is to design and develop the MPLMS which serves as an innovative tool to improve English pronunciation. This paper discusses the iterative methodology and the three-phase Alessi and Trollip model in the development of MPLMS. To align with the flexibility of the development of educational software, the iterative approach comprises plan, design, develop, evaluate and implement is followed. To ensure the instructional appropriateness of MPLMS, the instructional system design (ISD) model of Alessi and Trollip serves as a platform to guide the important instructional factors and process. It is expected that the results of future empirical research will support the efficacy of MPLMS and its place as the premier pronunciation learning system.

MHD Falkner-Skan Boundary Layer Flow with Internal Heat Generation or Absorption

This paper examines the forced convection flow of incompressible, electrically conducting viscous fluid past a sharp wedge in the presence of heat generation or absorption with an applied magnetic field. The system of partial differential equations governing Falkner - Skan wedge flow and heat transfer is first transformed into a system of ordinary differential equations using similarity transformations which is later solved using an implicit finite - difference scheme, along with quasilinearization technique. Numerical computations are performed for air (Pr = 0.7) and displayed graphically to illustrate the influence of pertinent physical parameters on local skin friction and heat transfer coefficients and, also on, velocity and temperature fields. It is observed that the magnetic field increases both the coefficients of skin friction and heat transfer. The effect of heat generation or absorption is found to be very significant on heat transfer, but its effect on the skin friction is negligible. Indeed, the occurrence of overshoot is noticed in the temperature profiles during heat generation process, causing the reversal in the direction of heat transfer.

Bifurcations and Chaotic Solutions of Two-dimensional Zonal Jet Flow on a Rotating Sphere

We study bifurcation structure of the zonal jet flow the streamfunction of which is expressed by a single spherical harmonics on a rotating sphere. In the non-rotating case, we find that a steady traveling wave solution arises from the zonal jet flow through Hopf bifurcation. As the Reynolds number increases, several traveling solutions arise only through the pitchfork bifurcations and at high Reynolds number the bifurcating solutions become Hopf unstable. In the rotating case, on the other hand, under the stabilizing effect of rotation, as the absolute value of rotation rate increases, the number of the bifurcating solutions arising from the zonal jet flow decreases monotonically. We also carry out time integration to study unsteady solutions at high Reynolds number and find that in the non-rotating case the unsteady solutions are chaotic, while not in the rotating cases calculated. This result reflects the general tendency that the rotation stabilizes nonlinear solutions of Navier-Stokes equations.